日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:⑴由.得.從而 查看更多

           

          題目列表(包括答案和解析)

          解:(Ⅰ)設(shè),其半焦距為.則

             由條件知,得

             的右準(zhǔn)線方程為,即

             的準(zhǔn)線方程為

             由條件知, 所以,故,

             從而,  

          (Ⅱ)由題設(shè)知,設(shè),,,

             由,得,所以

             而,由條件,得

             由(Ⅰ)得.從而,,即

             由,得.所以,

             故

          查看答案和解析>>

          如圖,已知△ABC中,∠C=
          π
          2
          .設(shè)∠CBA=θ,BC=a,它的內(nèi)接正方形DEFG的一邊EF在斜邊AB上,D、G分別在AC、BC上.假設(shè)△ABC的面積為S,正方形DEFG的面積為T.
          (1)用a,θ表示△ABC的面積S和正方形DEFG的面積T;
          (2)設(shè)f(θ)=
          T
          S
          ,試求f(θ)的最大值P,并判斷此時△ABC的形狀;
          (3)通過對此題的解答,我們是否可以作如下推斷:若需要從一塊直角三角形的材料上裁剪一整塊正方形(不得拼接),則這塊材料的最大利用率要視該直角三角形的具體形狀而定,但最大利用率不會超過第(2)小題中的結(jié)論P(yáng).請分析此推斷是否正確,并說明理由.

          查看答案和解析>>

          已知指數(shù)函數(shù),當(dāng)時,有,解關(guān)于x的不等式

          【解析】本試題主要考查了指數(shù)函數(shù),對數(shù)函數(shù)性質(zhì)的運(yùn)用。首先利用指數(shù)函數(shù),當(dāng)時,有,,得到,從而

          等價于,聯(lián)立不等式組可以解得

          解:∵ 時,有, ∴  。

          于是由,得,

          解得, ∴ 不等式的解集為。

           

          查看答案和解析>>

          (2012•鹽城一模)在綜合實踐活動中,因制作一個工藝品的需要,某小組設(shè)計了如圖所示的一個門(該圖為軸對稱圖形),其中矩形ABCD的三邊AB、BC、CD由長6分米的材料彎折而成,BC邊的長為2t分米(1≤t≤
          3
          2
          );曲線AOD擬從以下兩種曲線中選擇一種:曲線C1是一段余弦曲線(在如圖所示的平面直角坐標(biāo)系中,其解析式為y=cosx-1),此時記門的最高點O到BC邊的距離為h1(t);曲線C2是一段拋物線,其焦點到準(zhǔn)線的距離為
          9
          8
          ,此時記門的最高點O到BC邊的距離為h2(t).
          (1)試分別求出函數(shù)h1(t)、h2(t)的表達(dá)式;
          (2)要使得點O到BC邊的距離最大,應(yīng)選用哪一種曲線?此時,最大值是多少?

          查看答案和解析>>

          已知四棱錐的底面為直角梯形,,底面,且,的中點。

          (1)證明:面;

          (2)求所成的角;

          (3)求面與面所成二面角的余弦值.

          【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.

          (2)建立空間直角坐標(biāo)系,寫出向量的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.

          (3)分別求出平面的法向量和面的一個法向量,然后求出兩法向量的夾角即可.

           

          查看答案和解析>>


          同步練習(xí)冊答案