日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:(1)由的定義可知.(對所有實數(shù))等價于 查看更多

           

          題目列表(包括答案和解析)

          仔細閱讀下面問題的解法:
          設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          由已知可得  a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學(xué)習(xí)以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設(shè)g(x)=
          10-x
          10+x
          x∈A,試判斷g(x)的單調(diào)性;(不證)
          (3)又若B={x|
          10-x
          10+x
          >2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>

          仔細閱讀下面問題的解法:
          設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          解:由已知可得  a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學(xué)習(xí)以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設(shè)g(x)=
          10-x
          10+x
          x∈A,試判斷g(x)的單調(diào)性;(不證)
          (3)又若B={x|
          10-x
          10+x
          >2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>

          仔細閱讀下面問題的解法:
          設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          解:由已知可得 a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學(xué)習(xí)以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設(shè)g(x)=數(shù)學(xué)公式x∈A,試判斷g(x)的單調(diào)性;(不證)
          (3)又若B={x|數(shù)學(xué)公式>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案