日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)求證:直線EF⊥平面, 查看更多

           

          題目列表(包括答案和解析)

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
          1
          4
          x2.實數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點,A(p0,
          1
          4
          p02)(p0≠0),作L的切線交y軸于點B.證明:對線段AB上的任一點Q(p,q),有φ(p,q)=
          |p0|
          2
          ;
          (2)設(shè)M(a,b)是定點,其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點分別為E(p1
          1
          4
          p
          2
          1
          ),E′(p2,
          1
          4
          p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點的點集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          |p1|
          2

          (3)設(shè)D={ (x,y)|y≤x-1,y≥
          1
          4
          (x+1)2-
          5
          4
          }.當(dāng)點(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=數(shù)學(xué)公式x2.實數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點,A(p0數(shù)學(xué)公式p02)(p0≠0),作L的切線交y軸于點B.證明:對線段AB上的任一點Q(p,q),有φ(p,q)=數(shù)學(xué)公式;
          (2)設(shè)M(a,b)是定點,其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點分別為E(p1,數(shù)學(xué)公式),E′(p2數(shù)學(xué)公式p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點的點集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=數(shù)學(xué)公式
          (3)設(shè)D={ (x,y)|y≤x-1,y≥數(shù)學(xué)公式(x+1)2-數(shù)學(xué)公式}.當(dāng)點(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=
          1
          4
          x2.實數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點,A(p0,
          1
          4
          p02)(p0≠0),作L的切線交y軸于點B.證明:對線段AB上的任一點Q(p,q),有φ(p,q)=
          |p0|
          2
          ;
          (2)設(shè)M(a,b)是定點,其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點分別為E(p1,
          1
          4
          p21
          ),E′(p2
          1
          4
          p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點的點集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          |p1|
          2

          (3)設(shè)D={ (x,y)|y≤x-1,y≥
          1
          4
          (x+1)2-
          5
          4
          }.當(dāng)點(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          在平面直角坐標(biāo)系xOy上,給定拋物線L:y=x2,實數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點A(p0,p0)(p0≠0)作L的切線教y軸于點B。證明:對線段AB上任一點Q(p,q)有φ(p,q)=;
          (2)設(shè)M(a,b)是定點,其中a,b滿足a2-4b>0,a≠0。過M(a,b)作L的兩條切線l1,l2,切點分別為E(p1,p12),E′(p2p22),l1,l2與y軸分別交與F,F(xiàn)'。線段EF上異于兩端點的點集記為X。證明:M(a,b)∈X|P1|>|P2|φ(a,b)=
          (3)設(shè)D={(x,y)|y≤x-1,y≥(x+1)2-},當(dāng)點(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax)。

          查看答案和解析>>

          在平面直角坐標(biāo)系xoy上,給定拋物線L:y=x2.實數(shù)p,q滿足p2-4q≥0,x1,x2是方程x2-px+q=0的兩根,記φ(p,q)=max{|x1|,|x2|}.
          (1)過點,A(p,p2)(p≠0),作L的切線交y軸于點B.證明:對線段AB上的任一點Q(p,q),有φ(p,q)=;
          (2)設(shè)M(a,b)是定點,其中a,b滿足a2-4b>0,a≠0.過M(a,b)作L的兩條切線l1,l2,切點分別為E(p1),E′(p2p22),l1,l2與y軸分別交于F,F(xiàn)′.線段EF上異于兩端點的點集記為X.證明:M(a,b)∈X?|P1|<|P2|?φ(a,b)=
          (3)設(shè)D={ (x,y)|y≤x-1,y≥(x+1)2-}.當(dāng)點(p,q)取遍D時,求φ(p,q)的最小值 (記為φmin)和最大值(記為φmax

          查看答案和解析>>

          一、選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,恰有一項是符合題目要求的.

          (1) 函數(shù)=lg(x2-2x-3)的定義域是集合M,函數(shù)的定義域是集合P,則P∪M等于    ( A )

                     (A)(-∞,-1)∪[1,+∞)                (B)(-∞,-3)∪[1,+∞)

          (C)(-3,+∞)                                    (D)(-1,+∞)

          (2) 在等比數(shù)列{an}中,a1=3,a6=24,則a16等于   ( D )

          (A)864                 (B)1176                   (C)1440                   (D)1536

          (3) 直線關(guān)于直線對稱的直線方程是   ( A )

          (A)                              (B)

          (C)                                     (D)

          (4) 若平面α⊥平面β,l,m,n為兩兩互不重合的三條直線,,α∩β=l,且m⊥n,則   ( D )

          (A)且n∥l                                     (B)或n∥l     

          (C)                                     (D)

          (5) △ABC中,若,則△ABC一定是   ( C )

          (A)銳角三角形     (B)鈍角三角形        (C)直角三角形        (D)等腰三角形

          (6) 函數(shù)在區(qū)間(-2,2)上    ( B )

          (A)單調(diào)遞增                                           (B)單調(diào)遞減

          (C)先單調(diào)遞增后單調(diào)遞減                      (D)先單調(diào)遞減后單調(diào)遞增

          (7) 如圖,已知A,B,C是表面積為48π的球面上的三點,

          AB=2,BC=4,∠ABC=60°,O為球心,則二面角

          O-AB-C的大小為    ( D )                                        

          (A)                  (B)

          (C)arccos        (D)arccos

           

          (8) 一圓形紙片的圓心為O,點Q是圓內(nèi)異于O點的一定點,點A是圓周上一點,把紙片折疊使點A與點Q重合,然后抹平紙片,折痕CD與OA交于P點,當(dāng)點A運動時點P的軌跡是   ( A )

          (A)橢圓                      (B)雙曲線               (C)拋物線               (D)圓

          (9) 方程的解共有   ( C )

          (A)1個             (B)2個           (C)3個           (D)4個

          (10)如圖,某建筑工地搭建的腳手架局部類似于4×2×3的長方體框架(由24個棱長為1個單位長度的正方體框架組合而成).一建筑工人從

          A點沿腳手架到點B,每步走1個單位長度,

          且不連續(xù)向上攀登,則其行走的最近路線共

          有   ( B )

          (A)150條                  (B)525條

          (C)840條          (D)1260條

           

          二、填空題:本大題共6小題,每小題5分,共30分.不需寫出解答過程,請把答案直接填寫在答題卡相應(yīng)位置上

          (11)不等式的解集為          .答案:

          (12)函數(shù)的最小正周期T=           .答案:π

          (13)過雙曲線的左焦點且垂直于x軸的直線與雙曲線相交于M,N兩點,以MN為直徑的圓恰好過雙曲線的右頂點,則雙曲線的離心率等于      .答案:2

          (14)已知O是△ABC內(nèi)一點,,則△AOB與△AOC的面積的比值為        

                 答案:

          (15)在的二項展開式中,所有有理項之和為S,當(dāng)x=2時,S等于     .答案:2048

          (16)已知集合A={(x,y)│|x|+|y|=2,x,y∈R},B={(x,y)│|xy|=a,x,y∈R},若A∩B中的元素所對應(yīng)的點恰好是一個正八邊形的八個頂點,則正數(shù)a的值為     ▲     .答案:

           

          三、解答題:本大題共5小題,共70分.請在答題卡指定區(qū)域內(nèi)作答,解答時應(yīng)寫出文字說明、證明過程或演算步驟.

          (17)(本小題滿分14分)

          袋中裝有20個不同的小球,其中有n,n>1)個紅球,4個藍(lán)球,10個黃球,其余為白球.已知從袋中取出3個顏色相同的彩球(不是白球)的概率為

          (Ⅰ)求袋中的紅球、白球各有多少個?

          (Ⅱ)從袋中任取3個小球,求其中一定有紅球的概率.

          解:(Ⅰ)設(shè)“從袋中任取3球全為紅球”、“從袋中任取3球全為藍(lán)球”、“從袋中任取3 球全為黃球”分別為事件A,B,C,由題意知,A,B,C兩兩互斥,則

          .  …………………………………………4分

          故從袋中取出成3個都是相同顏色彩球(不是白球)的概率為

          ,

          . …………………………………………………6分

          由此得從袋中取3球不可能全為紅球,從而.又,n>1,故

          答:袋中有2個紅球4個白球. …………………………………………………………8分

                   (Ⅱ)設(shè)“從袋中任取3個小球,其中一定有紅球”為事件D,則

          答:從袋中任取3個小球,一定有紅球的概率為.………………………………14分

          (18)(本小題滿分14分)

          如圖,在長方體中,,,

          ,M為AB的中點,E,F分別為和AD1的中點.

          (Ⅰ)求證:直線EF⊥平面;

          (Ⅱ)求直線與平面所成角的大。

          解法一:(Ⅰ)延長AE交A1B1于點N,則點N為A1B1的中點.

          連D1N,∵E,F(xiàn)分別是A1M,AD1的中點,

          ∴EF∥D1N.…………………………………………………………………………2分

          在Rt△A1C1D1與Rt△ND1A1中,∵

          ∴Rt△A1C1D1∽Rt△ND1A1,∴A1C1⊥D1N.………………………………………4分

          又AA1⊥D1N,A1C1∩AA1=A1,∴D1N⊥平面AA1C1C.…………………………6分

          (Ⅱ)過點A1作A1H⊥AN,垂足為H,連D1H.由三垂線定理,得 D1H⊥AN,

          ∴AN ⊥平面A1D1H,∴平面A1D1 H⊥平面AEF.

          ∴A1D1在平面AEF中的射影即為D1H,

          ∠A1D1H就是A1D1與平面AEF所成的角.………………………………………10分

          在Rt△AA1N中,AA1=2,A1N=,∴A1H=

          tan∠A1D1H=,故直線A1D1與平面AEF所成的角為arctan

          ∵AD∥A1D1,∴直線AD與平面AEF所成的角為arctan.…………………14分

          解法二:(Ⅰ)以A為原點,AB為x軸,AD為y軸,AA1為z軸建立空間坐標(biāo)系.

          則A(0,0,0),B(,0,0),C(,1,0),D(0,1,0),A1(0,0,2),

          B1,0,2),C1,1,2),D(0,1,2). 

          =(0,0,2),=(,1,0).

          又M(,0,0),E(,0,1),F(xiàn)(0,,1),

          =(-,,0). ………………………………………………………3分

          ?=(-,,0)?(0,0,2)=0,

          ?=(-,,0)?(,1,0)=0,∴,

          又A1C1∩AA1=A1,∴EF⊥平面AA1C1C.………………………………………6分

          (Ⅱ)設(shè)向量n=(1,x,y)是平面AEF的一個法向量.

          由(Ⅰ),可得=(-,0,1),=(0,,1). ………………8分

          ?n=0,?n=0,得  解之,得

          故n=(1,,-). ……………………………………………………11分

          設(shè)直線AD與平面AEF所成的角為α,則sinα=

          所以設(shè)直線AD與平面AEF所成的角為arcsin.…………………………14分

          (19)(本小題滿分14分)

          將圓按向量a=(-1,2)平移后得到⊙O,直線l與⊙O相交于A、B兩點,若在⊙O上存在點C,使 =λa,求直線l的方程及對應(yīng)的點C的坐標(biāo).

          解:圓化為標(biāo)準(zhǔn)方程為

          按向量a=(-1,2)平移得⊙O方程為 x2+y2=5.……………………………………2分

          =λa,且||=||,∴∥a. ……………………5分

          ∴kAB.設(shè)直線l的方程為y=x+m,聯(lián)立,得

          將方程(1)代入(2),整理得5x2+4mx+4m2-20=0.(※) …………………………8分

          設(shè)A(x1,y1),B(x2,y2),則

                  x1+x2=-,y1+y2,=(-,). ……………………………10分

          因為點C在圓上,所以,解之,得

          此時,(※)式中的△=16m2-20(4m2-20)=300>0.…………………………………12分

          所求的直線l的方程為2x-4y+5=0,對應(yīng)的C點的坐標(biāo)為(-1,2);或直線l的方程為2x-4y-5=0,對應(yīng)的C點的坐標(biāo)為(1,-2).……………………………………14分

          解法二:同解法一,得⊙O的方程.……………………………………………………2分

          =λa,有||=|λa |,從而λ=±1.……………………………………………5分

          (1)當(dāng)λ=1時,=a=(-1,2),所以C(-1,2).從而OC的中點為M(-,1).

          ,可得點MAB上,又由,

          得直線的l的方程為,即.………………………………9分

          (2)當(dāng)λ=-1時,=-a=(1,-2),所以C(1,-2).

          OC的中點為N(,-1).

          同樣由點NAB上,可得直線l方程為. ……………………………12分

          所求的直線l的方程為2x-4y+5=0,對應(yīng)的C點的坐標(biāo)為(-1,2);或直線l的方程為2x-4y-5=0,對應(yīng)的C點的坐標(biāo)為(1,-2).……………………………………14分

          (20)(本小題滿分14分)

          已知是定義在R上的函數(shù),對于任意的實數(shù)a,b,都有,且

          (Ⅰ)求的值;

          (Ⅱ)求的解析式().

          解:(Ⅰ)令,則,從而.……………………2分

          ,可得.………………5分

          (Ⅱ)

          設(shè),則.…………………………………………………9分

          兩邊同乘以,可以得到,即

          故數(shù)列為公差為等差數(shù)列.  ……………………………………………12分

          ,可得

          所以,即.   ……………………………………………14分

          (21)(本小題滿分14分)

          設(shè)函數(shù)=x|x-a|+b.

          (Ⅰ)求證:為奇函數(shù)的充要條件是a2+b2=0;

          (Ⅱ)設(shè)常數(shù)b<2-3,且對任意x∈[0,1],<0恒成立,求實數(shù)a的取值范圍.

          解:(Ⅰ)充分性:若a2+b2=0時,即a=b=0,所以 f(x)=x | x|.

          ∵f(-x)=-x |-x|=-x |x|=-f(x),對一切x∈R恒成立,

          ∴f(x)是奇函數(shù). ……………………………………………………………………2分

                      必要性:若f(x)是奇函數(shù),則對一切x∈R,f(-x)=-f(x)恒成立,即

                              -x |-x-a|+b=-x |x-a|-b.

          令x=0,得b=-b,所以b=0.………………………………………………………4分

          再令x=a,得  2a | a |=0,∴a=0,即a2+b2=0.…………………………………6分

          (Ⅱ)解法一:∵b<2-3<0,∴當(dāng)x=0時,a取任意實數(shù)不等式恒成立,

          故考慮x∈(0,1]時,原不等式變?yōu)?| x-a |<-,即 x+<a<x-

          ∴只需對x∈(0,1],滿足 ………………………………8分

          對(1)式,由b<0時,在(0,1]上,f(x)=x+為增函數(shù),

          ∴(x+max=f(1)=1+b.

          ∴a>1+b.                               (3) ……………………………10分

          對(2)式,當(dāng)-1≤b<0時,在(0,1]上,x-=x+≥2

          當(dāng)x=時,x-=2,∴(x-min=2

          ∴a<2.                             (4)

          由(3)、(4),要使a存在,必須有 即-1≤b<-3+2

          ∴當(dāng)-1≤b<-3+2時,1+b <a<2.……………………………………12分

          當(dāng)b<-1時,在(0,1]上,f(x)=x-為減函數(shù),(證明略)

          ∴(x-min=f(1)=1-b.

          ∴當(dāng)b<-1時,1+b <a<1-b.

          綜上所述,當(dāng)-1≤b<2-3時,a的取值范圍是(1+b,2);當(dāng)b<-1時,a的取值范圍是(1+b,1-b).………………………………………………………14分

                      解法二:f(x)=x|x-a|+b<0(x∈[0,1],b<2-3恒成立,即x|x-a|<-b.

          由于b是負(fù)數(shù),故x2-ax<-b,且x2-ax>b.

          (1)x2-ax<-b在x∈[0,1],b<2-3恒成立,設(shè)g(x)= x2-ax+b,

          其中(1),(3)顯然成立,由(2),得a>1+b.(※)………………………………8分

          (2)x2-ax-b>0在x∈[0,1],b<2-3恒成立,設(shè)h(x)= x2-ax-b,

          即a<0.

          結(jié)合(※),得b<-1時,1+b<a<0;-1≤b<2-3時,a值不存在.  ……9分

          結(jié)合(※),得b<-1時,0<a≤2;-1≤b<2-3時,b+1<a<2.…11分

          結(jié)合(※),得b<-1時,2<a<1-b;-1≤b<2-3時,a不存在.………12分

          綜上,得-1≤b<2-3時,b+1<a<2;b<-1時,b+1<a<1-b.…14分

           


          同步練習(xí)冊答案