日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3)證法一:∵|f′(x)|=|3(x+)2+c-|, 查看更多

           

          題目列表(包括答案和解析)

          我們給出如下定義:對(duì)函數(shù)y=f(x),x∈D,若存在常數(shù)C(C∈R),對(duì)任意的x1∈D,存在唯一的x2∈D,使得
          f(x1)+f(x2)
          2
          =C
          ,則稱函數(shù)f(x)為“和諧函數(shù)”,稱常數(shù)C為函數(shù)f(x)的“和諧數(shù)”.
          (1)判斷函數(shù)f(x)=x+1,x∈[-1,3]是否為“和諧函數(shù)”?答:
          .(填“是”或“否”)如果是,寫(xiě)出它的一個(gè)“和諧數(shù)”:
          2
          2

          (2)請(qǐng)先學(xué)習(xí)下面的證明方法:
          證明:函數(shù)g(x)=lgx,x∈[10,100]為“和諧函數(shù)”,
          3
          2
          是其“和諧數(shù)”.
          證明過(guò)程如下:對(duì)任意x1∈[10,100],令
          g(x1)+g(x2)
          2
          =
          3
          2
          ,即
          lgx1+lgx2
          2
          =
          3
          2
          ,
          x2=
          1000
          x1
          .∵x1∈[10,100],∴x2=
          1000
          x1
          ∈[10,100]
          .即對(duì)任意x1∈[10,100],存在唯一的x2=
          1000
          x1
          ∈[10,100]
          ,使得
          g(x)+g(x2)
          2
          =
          3
          2
          .∴g(x)=lgx為“和諧函數(shù)”,
          3
          2
          是其“和諧數(shù)”.
          參照上述證明過(guò)程證明:函數(shù)h(x)=2x,x∈(1,3)為“和諧函數(shù)”;
          (3)寫(xiě)出一個(gè)不是“和諧函數(shù)”的函數(shù),并作出證明.

          查看答案和解析>>

          精英家教網(wǎng)定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓C1
          x2
          4
          +y2=1

          (1)若橢圓C2
          x2
          16
          +
          y2
          4
          =1
          ,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
          (2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
          (3)如圖:直線y=x與兩個(gè)“相似橢圓”M:
          x2
          a2
          +
          y2
          b2
          =1
          Mλ
          x2
          a2
          +
          y2
          b2
          =λ2(a>b>0,0<λ<1)
          分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似比的兩個(gè)相似三角形,寫(xiě)出具體作法.(不必證明)

          查看答案和解析>>

          定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓數(shù)學(xué)公式
          (1)若橢圓數(shù)學(xué)公式,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
          (2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
          (3)如圖:直線y=x與兩個(gè)“相似橢圓”數(shù)學(xué)公式數(shù)學(xué)公式分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似比的兩個(gè)相似三角形,寫(xiě)出具體作法.(不必證明)

          查看答案和解析>>

          定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
          (1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
          (2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
          (3)如圖:直線y=x與兩個(gè)“相似橢圓”分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似比的兩個(gè)相似三角形,寫(xiě)出具體作法.(不必證明)

          查看答案和解析>>

          定義:由橢圓的兩個(gè)焦點(diǎn)和短軸的一個(gè)頂點(diǎn)組成的三角形稱為該橢圓的“特征三角形”.如果兩個(gè)橢圓的“特征三角形”是相似的,則稱這兩個(gè)橢圓是“相似橢圓”,并將三角形的相似比稱為橢圓的相似比.已知橢圓
          (1)若橢圓,判斷C2與C1是否相似?如果相似,求出C2與C1的相似比;如果不相似,請(qǐng)說(shuō)明理由;
          (2)寫(xiě)出與橢圓C1相似且短半軸長(zhǎng)為b的橢圓Cb的方程;若在橢圓Cb上存在兩點(diǎn)M、N關(guān)于直線y=x+1對(duì)稱,求實(shí)數(shù)b的取值范圍?
          (3)如圖:直線y=x與兩個(gè)“相似橢圓”分別交于點(diǎn)A,B和點(diǎn)C,D,試在橢圓M和橢圓Mλ上分別作出點(diǎn)E和點(diǎn)F(非橢圓頂點(diǎn)),使△CDF和△ABE組成以λ為相似比的兩個(gè)相似三角形,寫(xiě)出具體作法.(不必證明)

          查看答案和解析>>


          同步練習(xí)冊(cè)答案