日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅱ)由于.故.由.得 查看更多

           

          題目列表(包括答案和解析)

          汽車在行駛中,由于慣性的作用,剎車后還要繼續(xù)向前滑行一段距離才能停止,我們稱這段距離為“剎車距離”。剎車距離是分析事故原因的一個重要因素。
          在一個限速為40km/h的彎道上,甲、乙兩輛汽車相向而行,發(fā)現(xiàn)情況不對,同時剎車,但還是相碰了。事后現(xiàn)場勘查測得甲車的剎車距離略超過12m,乙車的剎車距離略超過10m,又知甲、乙兩種車型的剎車距離s(m)與車速x(km/h)之間分別有如下關(guān)系: s=0.1x+0.01x2,s=0.05x+0.005x2。
          試判斷甲、乙兩車有無超速現(xiàn)象,并根據(jù)所學(xué)數(shù)學(xué)知識給出判斷的依據(jù)。

          查看答案和解析>>

          已知冪函數(shù)滿足。

          (1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;

          (2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。

          【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運用。第一問中利用,冪函數(shù)滿足,得到

          因為,所以k=0,或k=1,故解析式為

          (2)由(1)知,,,因此拋物線開口向下,對稱軸方程為:,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到

          (1)對于冪函數(shù)滿足,

          因此,解得,………………3分

          因為,所以k=0,或k=1,當(dāng)k=0時,,

          當(dāng)k=1時,,綜上所述,k的值為0或1,!6分

          (2)函數(shù),………………7分

          由此要求,因此拋物線開口向下,對稱軸方程為:

          當(dāng)時,,因為在區(qū)間上的最大值為5,

          所以,或…………………………………………10分

          解得滿足題意

           

          查看答案和解析>>

          ((本小題共13分)

          若數(shù)列滿足,數(shù)列數(shù)列,記=.

          (Ⅰ)寫出一個滿足,且〉0的數(shù)列;

          (Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;

          (Ⅲ)對任意給定的整數(shù)n(n≥2),是否存在首項為0的E數(shù)列,使得=0?如果存在,寫出一個滿足條件的E數(shù)列;如果不存在,說明理由。

          【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。

          (答案不唯一,0,1,0,1,0也是一個滿足條件的E的數(shù)列A5

          (Ⅱ)必要性:因為E數(shù)列A5是遞增數(shù)列,所以.所以A5是首項為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結(jié)論得證。

           

           

          查看答案和解析>>

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對任意的成立,求實數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域為

          ,得

          當(dāng)x變化時,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

          ,得

          ①當(dāng)時,,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時,,對于,,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

          當(dāng)時,

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>

          已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

          (1)求數(shù)列的通項公式

          (2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.

          【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,

          由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當(dāng)時,;當(dāng)時,;而,所以猜想,的最小值為然后加以證明即可。

          解:(1)設(shè)數(shù)列公差為,由題意可知,即

          解得(舍去).      …………3分

          所以,.        …………6分

          (2)不等式等價于

          當(dāng)時,;當(dāng)時,;

          ,所以猜想,的最小值為.     …………8分

          下證不等式對任意恒成立.

          方法一:數(shù)學(xué)歸納法.

          當(dāng)時,,成立.

          假設(shè)當(dāng)時,不等式成立,

          當(dāng)時,, …………10分

          只要證  ,只要證  ,

          只要證  ,只要證 

          只要證  ,顯然成立.所以,對任意,不等式恒成立.…14分

          方法二:單調(diào)性證明.

          要證 

          只要證  ,  

          設(shè)數(shù)列的通項公式,        …………10分

          ,    …………12分

          所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.

          ,所以恒成立,

          的最小值為

           

          查看答案和解析>>


          同步練習(xí)冊答案