日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 18. 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分12分)二次函數的圖象經過三點.

          (1)求函數的解析式(2)求函數在區(qū)間上的最大值和最小值

          查看答案和解析>>

          (本小題滿分12分)已知等比數列{an}中, 

             (Ⅰ)求數列{an}的通項公式an;

             (Ⅱ)設數列{an}的前n項和為Sn,證明:;

             (Ⅲ)設,證明:對任意的正整數n、m,均有

          查看答案和解析>>

          (本小題滿分12分)已知函數,其中a為常數.

             (Ⅰ)若當恒成立,求a的取值范圍;

             (Ⅱ)求的單調區(qū)間.

          查看答案和解析>>

          (本小題滿分12分)

          甲、乙兩籃球運動員進行定點投籃,每人各投4個球,甲投籃命中的概率為,乙投籃命中的概率為

             (Ⅰ)求甲至多命中2個且乙至少命中2個的概率;

             (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分數η的概率分布和數學期望.

          查看答案和解析>>

          (本小題滿分12分)已知是橢圓的兩個焦點,O為坐標原點,點在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點A、B.

             (1)求橢圓的標準方程;w.w.w.k.s.5.u.c.o.m        

             (2)當時,求弦長|AB|的取值范圍.

          查看答案和解析>>

          1.C  2.B  3.B  4.D  5.C   6.A  7.B  8.B  9.D  10.C

          11.   12.1                 13.        14.4            15.

          16.當a>1時,有,∴,∴,∴,∴當0<a<1時,有,∴.

          綜上,當a>1時,;當0<a<1時,

          17.(Ⅰ)有0枚正面朝上的概率為,有1枚正面朝上的概率為:

          (Ⅱ)出現奇數枚正面朝上的概率為:

          ∴出現偶數枚正面朝上的概率為,∴概率相等.

          18.(Ⅰ)在梯形ABCD中,∵,

          ∴四邊形ABCD是等腰梯形,

          ,∴

          又∵平面平面ABCD,交線為AC,∴平面ACFE.

          (Ⅱ)當時,平面BDF. 在梯形ABCD中,設,連結FN,則

          ,∴∴MFAN,

          ∴四邊形ANFM是平行四邊形. ∴

          又∵平面BDF,平面BDF. ∴平面BDF.

          19.(Ⅰ)設橢圓方程為,則有,∴a=6, b=3.

          ∴橢圓C的方程為

          (Ⅱ),設點,則

          ,

          ,∴,∴的最小值為6.

          20.(Ⅰ)設,,

          單調遞增.

          (Ⅱ)當時,,又,即;

                當時,,,由,得.

          的值域為

          (Ⅲ)當x=0時,,∴x=0為方程的解.

          當x>0時,,∴,∴

          當x<0時,,∴,∴

          即看函數

          與函數圖象有兩個交點時k的取值范圍,應用導數畫出的大致圖象,∴,∴

          21.(Ⅰ)令n=1有,,∴,∴.

          (Ⅱ)∵……① ∴當時,有……②

          ①-②有,

          將以上各式左右兩端分別相乘,得,∴

          當n=1,2時也成立,∴.

          (Ⅲ),當時,

          ,

          時,

          時,

          時,

           

           

           

           


          同步練習冊答案