日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以.對任意的.的最小值為(其中當(dāng)時.) --- (以上答案和評分標(biāo)準(zhǔn)僅供參考.其它答案.請參照給分) 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)的最小值為0,其中

          (Ⅰ)求的值;

          (Ⅱ)若對任意的成立,求實(shí)數(shù)的最小值;

          (Ⅲ)證明).

          【解析】(1)解: 的定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118530600520067_ST.files/image010.png">

          ,得

          當(dāng)x變化時,,的變化情況如下表:

          x

          -

          0

          +

          極小值

          因此,處取得最小值,故由題意,所以

          (2)解:當(dāng)時,取,有,故時不合題意.當(dāng)時,令,即

          ,得

          ①當(dāng)時,上恒成立。因此上單調(diào)遞減.從而對于任意的,總有,即上恒成立,故符合題意.

          ②當(dāng)時,,對于,故上單調(diào)遞增.因此當(dāng)取時,,即不成立.

          不合題意.

          綜上,k的最小值為.

          (3)證明:當(dāng)n=1時,不等式左邊==右邊,所以不等式成立.

          當(dāng)時,

                                

                                

          在(2)中取,得 ,

          從而

          所以有

               

               

               

               

                

          綜上,,

           

          查看答案和解析>>

           對于任意的實(shí)數(shù),記其中函數(shù)  是奇函數(shù),且當(dāng)時,函數(shù)是正比例函數(shù),其圖象與時函數(shù)的圖象如圖所示,則下列關(guān)于函數(shù)的說法中,正確的是(    )

              A.y=F(x)為奇函數(shù)

              B.y=F(x)在(—3,0)上為增函數(shù)

              C.y=F(x)的最小值為—2,最大值為2

              D.以上說法都不正確

           

          查看答案和解析>>

          給出下列命題:
          ①函數(shù)的最小值為5;
          ②若直線y=kx+1與曲線y=|x|有兩個交點(diǎn),則k的取值范圍是-1≤k≤1;
          ③若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長為2,則m的傾斜角可以是15°或75°
          ④設(shè)Sn是公差為d(d≠0)的無窮等差數(shù)列{an}的前n項(xiàng)和,若對任意n∈N*,均有Sn>0,則數(shù)列{Sn}是遞增數(shù)列
          ⑤設(shè)△ABC的內(nèi)角A.B.C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,3b=20acosA則sinA:sinB:sinC為6:5:4
          其中所有正確命題的序號是   

          查看答案和解析>>

          給出下列命題:
          ①函數(shù)y=
          x2-8x+20
          +
          x2+1
          的最小值為5;
          ②若直線y=kx+1與曲線y=|x|有兩個交點(diǎn),則k的取值范圍是-1≤k≤1;
          ③若直線m被兩平行線l1:x-y+1=0與l2:x-y+3=0所截得的線段的長為2
          2
          ,則m的傾斜角可以是15°或75°
          ④設(shè)Sn是公差為d(d≠0)的無窮等差數(shù)列{an}的前n項(xiàng)和,若對任意n∈N*,均有Sn>0,則數(shù)列{Sn}是遞增數(shù)列
          ⑤設(shè)△ABC的內(nèi)角A.B.C所對的邊分別為a,b,c,若三邊的長為連續(xù)的三個正整數(shù),且A>B>C,3b=20acosA則sinA:sinB:sinC為6:5:4
          其中所有正確命題的序號是
          ①③④⑤
          ①③④⑤

          查看答案和解析>>

          若數(shù)列{an}滿足an+2+pan+1+qan=0(其中p2+q2≠0,且p、q為常數(shù))對任意n∈N*都成立,則我們把數(shù)列{an}稱為“L型數(shù)列”.
          (1)試問等差數(shù)列{an}、等比數(shù)列{bn}(公比為r)是否為L型數(shù)列?若是,寫出對應(yīng)p、q的值;若不是,說明理由.
          (2)已知L型數(shù)列{an}滿足an+1+pan+qan-1=0(n≥2,n∈N*,p2-4q>0,q≠0),x1、x2是方程x2+px+q=0的兩根,若b-axi≠0(i=1,2),求證:數(shù)列{an+1-xian}(i=1,2,n∈N*)是等比數(shù)列(只選其中之一加以證明即可).
          (3)請你提出一個關(guān)于L型數(shù)列的問題,并加以解決.(本小題將根據(jù)所提問題的普適性給予不同的分值,最高10分)

          查看答案和解析>>


          同步練習(xí)冊答案