日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 此后第一個物體向下運動的加速度為: T-=, 查看更多

           

          題目列表(包括答案和解析)

          第九部分 穩(wěn)恒電流

          第一講 基本知識介紹

          第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質的導電性”。前者是對于電路的外部計算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質導電的情形有什么區(qū)別。

          應該說,第一塊的知識和高考考綱對應得比較好,深化的部分是對復雜電路的計算(引入了一些新的處理手段)。第二塊雖是全新的內容,但近幾年的考試已經很少涉及,以至于很多奧賽培訓資料都把它刪掉了。鑒于在奧賽考綱中這部分內容還保留著,我們還是想粗略地介紹一下。

          一、歐姆定律

          1、電阻定律

          a、電阻定律 R = ρ

          b、金屬的電阻率 ρ = ρ0(1 + αt)

          2、歐姆定律

          a、外電路歐姆定律 U = IR ,順著電流方向電勢降落

          b、含源電路歐姆定律

          在如圖8-1所示的含源電路中,從A點到B點,遵照原則:①遇電阻,順電流方向電勢降落(逆電流方向電勢升高)②遇電源,正極到負極電勢降落,負極到正極電勢升高(與電流方向無關),可以得到以下關系

          UA ? IR ? ε ? Ir = UB 

          這就是含源電路歐姆定律。

          c、閉合電路歐姆定律

          在圖8-1中,若將A、B兩點短接,則電流方向只可能向左,含源電路歐姆定律成為

          UA + IR ? ε + Ir = UB = UA

           ε = IR + Ir ,或 I = 

          這就是閉合電路歐姆定律。值得注意的的是:①對于復雜電路,“干路電流I”不能做絕對的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對的,它可以是多個電源的串、并聯,也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個電阻的串、并聯或混聯,但不能包含電源。

          二、復雜電路的計算

          1、戴維南定理:一個由獨立源、線性電阻、線性受控源組成的二端網絡,可以用一個電壓源和電阻串聯的二端網絡來等效。(事實上,也可等效為“電流源和電阻并聯的的二端網絡”——這就成了諾頓定理。)

          應用方法:其等效電路的電壓源的電動勢等于網絡的開路電壓,其串聯電阻等于從端鈕看進去該網絡中所有獨立源為零值時的等效電阻。

          2、基爾霍夫(克希科夫)定律

          a、基爾霍夫第一定律:在任一時刻流入電路中某一分節(jié)點的電流強度的總和,等于從該點流出的電流強度的總和。

          例如,在圖8-2中,針對節(jié)點P ,有

          I2 + I3 = I1 

          基爾霍夫第一定律也被稱為“節(jié)點電流定律”,它是電荷受恒定律在電路中的具體體現。

          對于基爾霍夫第一定律的理解,近來已經拓展為:流入電路中某一“包容塊”的電流強度的總和,等于從該“包容塊”流出的電流強度的總和。

          b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動勢的代數和,等于各部分電阻(在交流電路中為阻抗)與電流強度乘積的代數和。

          例如,在圖8-2中,針對閉合回路① ,有

          ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2 

          基爾霍夫第二定律事實上是含源部分電路歐姆定律的變體(☆同學們可以列方程 UP = … = UP得到和上面完全相同的式子)。

          3、Y?Δ變換

          在難以看清串、并聯關系的電路中,進行“Y型?Δ型”的相互轉換常常是必要的。在圖8-3所示的電路中

          ☆同學們可以證明Δ→ Y的結論…

          Rc = 

          Rb = 

          Ra = 

          Y→Δ的變換稍稍復雜一些,但我們仍然可以得到

          R1 = 

          R2 = 

          R3 = 

          三、電功和電功率

          1、電源

          使其他形式的能量轉變?yōu)殡娔艿难b置。如發(fā)電機、電池等。發(fā)電機是將機械能轉變?yōu)殡娔;干電池、蓄電池是將化學能轉變?yōu)殡娔;光電池是將光能轉變?yōu)殡娔;原子電池是將原子核放射能轉變?yōu)殡娔埽辉陔娮釉O備中,有時也把變換電能形式的裝置,如整流器等,作為電源看待。

          電源電動勢定義為電源的開路電壓,內阻則定義為沒有電動勢時電路通過電源所遇到的電阻。據此不難推出相同電源串聯、并聯,甚至不同電源串聯、并聯的時的電動勢和內阻的值。

          例如,電動勢、內阻分別為ε1 、r1和ε2 、r2的電源并聯,構成的新電源的電動勢ε和內阻r分別為(☆師生共同推導…)

          ε = 

          r = 

          2、電功、電功率

          電流通過電路時,電場力對電荷作的功叫做電功W。單位時間內電場力所作的功叫做電功率P 。

          計算時,只有W = UIt和P = UI是完全沒有條件的,對于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 。

          對非純電阻電路,電功和電熱的關系依據能量守恒定律求解。 

          四、物質的導電性

          在不同的物質中,電荷定向移動形成電流的規(guī)律并不是完全相同的。

          1、金屬中的電流

          即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。

          2、液體導電

          能夠導電的液體叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負離子導電是液體導電的特點(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會離解成銅離子Cu2+和硫酸根離子S,它們在電場力的作用下定向移動形成電流)。

          在電解液中加電場時,在兩個電極上(或電極旁)同時產生化學反應的過程叫作“電解”。電解的結果是在兩個極板上(或電極旁)生成新的物質。

          液體導電遵從法拉第電解定律——

          法拉第電解第一定律:電解時在電極上析出或溶解的物質的質量和電流強度、跟通電時間成正比。表達式:m = kIt = KQ (式中Q為析出質量為m的物質所需要的電量;K為電化當量,電化當量的數值隨著被析出的物質種類而不同,某種物質的電化當量在數值上等于通過1C電量時析出的該種物質的質量,其單位為kg/C。)

          法拉第電解第二定律:物質的電化當量K和它的化學當量成正比。某種物質的化學當量是該物質的摩爾質量M(克原子量)和它的化合價n的比值,即 K =  ,而F為法拉第常數,對任何物質都相同,F = 9.65×104C/mol 。

          將兩個定律聯立可得:m = Q 。

          3、氣體導電

          氣體導電是很不容易的,它的前提是氣體中必須出現可以定向移動的離子或電子。按照“載流子”出現方式的不同,可以把氣體放電分為兩大類——

          a、被激放電

          在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會有少量氣體分子或原子被電離,或在有些燈管內,通電的燈絲也會發(fā)射電子,這些“載流子”均會在電場力作用下產生定向移動形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有

          b、自激放電

          但是,當電場足夠強,電子動能足夠大,它們和中性氣體相碰撞時,可以使中性分子電離,即所謂碰撞電離。同時,在正離子向陰極運動時,由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來,這種現象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時間內出現了大量的電子和正離子,電流亦迅速增大。這種現象被稱為自激放電。自激放電不遵從歐姆定律。

          常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。

          4、超導現象

          據金屬電阻率和溫度的關系,電阻率會隨著溫度的降低和降低。當電阻率降為零時,稱為超導現象。電阻率為零時對應的溫度稱為臨界溫度。超導現象首先是荷蘭物理學家昂尼斯發(fā)現的。

          超導的應用前景是顯而易見且相當廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產業(yè)化的價值不大,為了解決這個矛盾,科學家們致力于尋找或合成臨界溫度比較切合實際的材料就成了當今前沿科技的一個熱門領域。當前人們的研究主要是集中在合成材料方面,臨界溫度已經超過100K,當然,這個溫度距產業(yè)化的期望值還很遠。

          5、半導體

          半導體的電阻率界于導體和絕緣體之間,且ρ

          查看答案和解析>>

          第一問  車和物體收到的力都是摩擦力

          f=μmg   車的加速度a1=f/M=μmg/M=1m/s^2

          滑塊的加速度a2=f/m=μmg/m=5m/s^2

          第二問  S=2.7m

          假設不能從車上滑出  那么滑塊最后必定停留在車上   并且和車具有同樣的末速度  設為v'

          因為系統(tǒng)在水平方向上所受的合外力為零  所以滿足動量守恒

          Mv+mv0=(M+m)*v' →  v'=v0*m/(M+m)=7.5*10/(10+50)=1.25m/s

          然后我們看能量  如果系統(tǒng)的初動能減去末動能  小于摩擦力所能做的最大功(就是滑塊滑到頭 但沒掉下來)  那么假設成立  反之  不成立  不能明白的話  我們看下面具體的解答

          先求系統(tǒng)的末動能  Ek'=1/2(M+m)v'^2=1/2*(50+10)*1.25^2=46.875(J)

          系統(tǒng)的初動能  Ek=1/2mv0^2=1/2*10*7.5^2=281.25(J)

          摩擦力所能做的最大功   W=fs=μmgs=0.5*10*10*3=150(J)

          Ek-Ek'>W  所以也就是說  系統(tǒng)的初動能被摩擦力消耗掉一部分后【克服摩擦力做功】  所剩下的動能  還是要大于他們最后一起以同樣的速度運動時的動能  因此滑塊最后不肯能停在車上

          那么   我們就來求滑塊落地時與平板車右端間的水平距離

          因為滑塊滑出小車后  在水平方向上和小車都是做勻速運動

          所以他們之間的距離  就是他們的速度差乘以滑塊落地所需的時間

          那么  我們就需要算出滑塊的末速度v'和小車的末速度v''

          現在有兩個未知數 那就必須有兩個方程

          第一個方程是能量方程  Ek-W=1/2mv'^2+1/2Mv''^2

          第二個方程是動量方程  mv0=mv'+Mv''

          聯立這兩個方程 解得  v''=0.5m/s  或 v''=2m/s(舍掉)

          從而得到v'=5m/s

          接下來算滑塊落地要多長時間

          由h=1/2gt^2  帶入數據  得t=0.6s

          所以最后的答案:  S=(v'-v'')*t=4.5*0.6=2.7m

          查看答案和解析>>

          (6分)判斷以下說法的正誤,請在相應的括號內打“”或“√”。

            、擴散現象和布朗運動的劇烈程度都與溫度有關,所以擴散現象和布朗運動也叫做熱運動。(   )

            、兩個分子甲和乙相距較遠(此時它們之間的作用力可以忽略),設甲固定不動,乙逐漸向甲靠近,直到不能再靠近,在整個移動過程中前階段分子力做正功,后階段克服分子力做功。(   )

            、晶體熔化過程中,當溫度達到熔點時,吸收的熱量全部用來破壞空間點陣,增加分子勢能,而分子平均動能卻保持不變,所以晶體有固定的熔點。非晶體沒有空間點陣,熔化時不需要去破壞空間點陣,吸收的熱量主要轉化為分子的動能,不斷吸熱,溫度就不斷上升。(   )

            、根據熱力學第二定律可知,凡與熱現象有關的宏觀過程都具有方向性,在熱傳導中,熱量只能自發(fā)地從高溫物體傳遞給低溫物體,而不能自發(fā)地從低溫物體傳遞給高溫物體。(   )

            、氣體分子間的距離較大,除了相互碰撞或者跟器壁碰撞外,氣體分子幾乎不受力的作用而做勻速直線運動。分子的運動雜亂無章,在某一時刻,向各個方向運動的氣體分子數目不均等。(   )

          、一由不導熱的器壁做成的容器,被不導熱的隔板分成甲、乙兩室。甲室中裝有一定質量的溫度為的氣體,乙室為真空,如圖所示。提起隔板,讓甲室中的氣體進入乙室,若甲室中氣體的內能只與溫度有關,則提起隔板后當氣體重新達到平衡時,其溫度仍為。(   )

          查看答案和解析>>

          選修3-3:

          (1)判斷以下說法正誤,請在相應的括號內打“×”或“√”

          A. 擴散現象和布朗運動的劇烈程度都與溫度有關,所以擴散現象和布朗運動也叫做熱運動。

          B. 兩個分子甲和乙相距較遠(此時它們之間的作用力可以忽略),設甲固定不動,乙逐漸向甲靠近,直到不能再靠近,在整個移動過程中前階段分子力做正功,后階段外力克服分子力做功。

          C. 晶體熔化過程中,當溫度達到熔點時,吸收的熱量全部用來破壞空間點陣,增加分子勢能,而分子平均動能卻保持不變,所以晶體有固定的熔點。非晶體沒有空間點陣,熔化時不需要去破壞空間點陣,吸收的熱量主要轉化為分子的動能,不斷吸熱,溫度就不斷上升。

          D. 根據熱力學第二定律可知,凡與熱現象有關的宏觀過程都具有方向性,在熱傳導中,熱量只能自發(fā)地從高溫物體傳遞給低溫物體,而不能自發(fā)地從低溫物體傳遞給高溫物體。

          E. 氣體分子間的距離較大,除了相互碰撞或者跟器壁碰撞外,氣體分子幾乎不受力的作用而做勻速直線運動。分子的運動雜亂無章,在某一時刻,向各個方向運動的氣體分子數目不均等。

          F. 一由不導熱的器壁做成的容器,被不導熱的隔板分成甲、乙兩室。甲室中裝有一定質量的溫度為T的氣體,乙室為真空,如下圖所示。提起隔板,讓甲室中的氣體進入乙室,若甲室中氣體的內能只與溫度有關,則提起隔板后當氣體重新達到平衡時,其溫度仍為T。

          (2)在下圖所示的氣缸中封閉著溫度為100℃的空氣,一重物用繩索經滑輪與缸中活塞相連接,重物和活塞均處于平衡狀態(tài),這時活塞離缸底的高度為10 cm,如果缸內空氣變?yōu)?℃,問:

          ①重物是上升還是下降?

          ②這時重物將從原處移動多少厘米?(設活塞與氣缸壁間無摩擦)

          查看答案和解析>>


          同步練習冊答案