日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ②若.即時.由(1)知. 查看更多

           

          題目列表(包括答案和解析)

          已知中心在坐標(biāo)原點,焦點在軸上的橢圓C;其長軸長等于4,離心率為

          (Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;

          (Ⅱ)若點(0,1), 問是否存在直線與橢圓交于兩點,且?若存在,求出的取值范圍,若不存在,請說明理由.

          【解析】本試題主要考查了橢圓的方程的求解,直線與橢圓的位置關(guān)系的運用。

          第一問中,可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

          則由長軸長等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標(biāo)準(zhǔn)方程為

          第二問中,

          假設(shè)存在這樣的直線,設(shè),MN的中點為

           因為|ME|=|NE|所以MNEF所以

          (i)其中若時,則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得

          代入1,2式中得到范圍。

          (Ⅰ) 可設(shè)橢圓的標(biāo)準(zhǔn)方程為 

          則由長軸長等于4,即2a=4,所以a=2.又,所以,

          又由于 

          所求橢圓C的標(biāo)準(zhǔn)方程為

           (Ⅱ) 假設(shè)存在這樣的直線,設(shè),MN的中點為

           因為|ME|=|NE|所以MNEF所以

          (i)其中若時,則K=0,顯然直線符合題意;

          (ii)下面僅考慮情形:

          ,得,

          ,得……②  ……………………9分

          代入①式得,解得………………………………………12分

          代入②式得,得

          綜上(i)(ii)可知,存在這樣的直線,其斜率k的取值范圍是

           

          查看答案和解析>>

          如圖,已知橢圓的焦點和上頂點分別為、、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.

          (1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;

          (2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(異于端點),試問:當(dāng)面積最大時, 是否與有關(guān)?并證明你的結(jié)論.

          (3)根據(jù)與橢圓相似且半短軸長為的橢圓的方程,提出你認(rèn)為有價值的相似橢圓之間的三種性質(zhì)(不需證明);

           

          查看答案和解析>>

          如圖,已知橢圓的焦點和上頂點分別為、,我們稱為橢圓的特征三角形.如果兩個橢圓的特征三角形是相似的,則稱這兩個橢圓是“相似橢圓”,且三角形的相似比即為橢圓的相似比.
          (1)已知橢圓,判斷是否相似,如果相似則求出的相似比,若不相似請說明理由;
          (2)若與橢圓相似且半短軸長為的橢圓為,且直線與橢圓為相交于兩點(異于端點),試問:當(dāng)面積最大時,是否與有關(guān)?并證明你的結(jié)論.
          (3)根據(jù)與橢圓相似且半短軸長為的橢圓的方程,提出你認(rèn)為有價值的相似橢圓之間的三種性質(zhì)(不需證明);

          查看答案和解析>>

          已知函數(shù)=.

          (Ⅰ)當(dāng)時,求不等式 ≥3的解集;

          (Ⅱ) 若的解集包含,求的取值范圍.

          【命題意圖】本題主要考查含絕對值不等式的解法,是簡單題.

          【解析】(Ⅰ)當(dāng)時,=,

          當(dāng)≤2時,由≥3得,解得≤1;

          當(dāng)2<<3時,≥3,無解;

          當(dāng)≥3時,由≥3得≥3,解得≥8,

          ≥3的解集為{|≤1或≥8};

          (Ⅱ)

          當(dāng)∈[1,2]時,==2,

          ,有條件得,即,

          故滿足條件的的取值范圍為[-3,0]

           

          查看答案和解析>>

          設(shè)向量,,其中,由不等式 恒成立,可以證明(柯西)不等式(當(dāng)且僅當(dāng),即時等號成立),己知,若恒成立,利用可西不等式可求得實數(shù)的取值范圍是        

           

          查看答案和解析>>


          同步練習(xí)冊答案