日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 聯(lián)立.解得. ------5分 查看更多

           

          題目列表(包括答案和解析)

          已知中心在原點(diǎn)O,焦點(diǎn)F1、F2在x軸上的橢圓E經(jīng)過點(diǎn)C(2,2),且拋物線的焦點(diǎn)為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點(diǎn),當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運(yùn)用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點(diǎn)坐標(biāo)得到,又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921190757897157/SYS201206192120259226615718_ST.files/image003.png">,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當(dāng)m=-3時,直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          某中學(xué)研究性學(xué)習(xí)小組,為了考察高中學(xué)生的作文水平與愛看課外書的關(guān)系,在本校高三年級隨機(jī)調(diào)查了 50名學(xué)生.調(diào)査結(jié)果表明:在愛看課外書的25人中有18人作文水平好,另7人作文水平一般;在不愛看課外書的25人中有6人作文水平好,另19人作文水平一般.

          (Ⅰ)試根據(jù)以上數(shù)據(jù)完成以下2×2列聯(lián)表,并運(yùn)用獨(dú)立性檢驗(yàn)思想,指出有多大把握認(rèn)為中學(xué)生的作文水平與愛看課外書有關(guān)系?

          高中學(xué)生的作文水平與愛看課外書的2×2列聯(lián)表

           

          愛看課外書

          不愛看課外書

          總計(jì)

          作文水平好

           

           

           

          作文水平一般

           

           

           

          總計(jì)

           

           

           

          (Ⅱ)將其中某5名愛看課外書且作文水平好的學(xué)生分別編號為1、2、3、4、5,某5名愛看課外書且作文水平一般的學(xué)生也分別編號為1、2、3、4、5,從這兩組學(xué)生中各任選1人進(jìn)行學(xué)習(xí)交流,求被選取的兩名學(xué)生的編號之和為3的倍數(shù)或4的倍數(shù)的概率.

          參考公式:,其中.

          參考數(shù)據(jù):

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          【解析】本試題主要考查了古典概型和列聯(lián)表中獨(dú)立性檢驗(yàn)的運(yùn)用。結(jié)合公式為判定兩個分類變量的相關(guān)性,

          第二問中,確定

          結(jié)合互斥事件的概率求解得到。

          解:因?yàn)?×2列聯(lián)表如下

           

          愛看課外書

          不愛看課外書

          總計(jì)

          作文水平好

           18

           6

           24

          作文水平一般

           7

           19

           26

          總計(jì)

           25

           25

           50

           

          查看答案和解析>>

          已知向量),向量,,

          .

          (Ⅰ)求向量; (Ⅱ)若,求.

          【解析】本試題主要考查了向量的數(shù)量積的運(yùn)算,以及兩角和差的三角函數(shù)關(guān)系式的運(yùn)用。

          (1)問中∵,∴,…………………1分

          ,得到三角關(guān)系是,結(jié)合,解得。

          (2)由,解得,,結(jié)合二倍角公式,和,代入到兩角和的三角函數(shù)關(guān)系式中就可以求解得到。

          解析一:(Ⅰ)∵,∴,…………1分

          ,∴,即   ①  …………2分

           ②   由①②聯(lián)立方程解得,,5分

               ……………6分

          (Ⅱ)∵,,  …………7分

          ,               ………8分

          又∵,          ………9分

          ,            ……10分

          解法二: (Ⅰ),…………………………………1分

          ,∴,即,①……2分

              ②

          將①代入②中,可得   ③    …………………4分

          將③代入①中,得……………………………………5分

             …………………………………6分

          (Ⅱ) 方法一 ∵,,∴,且……7分

          ,從而.      …………………8分

          由(Ⅰ)知, ;     ………………9分

          .     ………………………………10分

          又∵,∴, 又,∴    ……11分

          綜上可得  ………………………………12分

          方法二∵,,∴,且…………7分

          .                                 ……………8分

          由(Ⅰ)知, .                …………9分

                       ……………10分

          ,且注意到,

          ,又,∴   ………………………11分

          綜上可得                    …………………12分

          (若用,又∵ ∴ ,

           

          查看答案和解析>>

          設(shè)橢圓 )的一個頂點(diǎn)為,,分別是橢圓的左、右焦點(diǎn),離心率 ,過橢圓右焦點(diǎn) 的直線  與橢圓 交于 , 兩點(diǎn).

          (1)求橢圓的方程;

          (2)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

          【解析】本試題主要考查了橢圓的方程的求解,以及直線與橢圓的位置關(guān)系的運(yùn)用。(1)中橢圓的頂點(diǎn)為,即又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061917121082894691/SYS201206191714546570844292_ST.files/image015.png">,得到,然后求解得到橢圓方程(2)中,對直線分為兩種情況討論,當(dāng)直線斜率存在時,當(dāng)直線斜率不存在時,聯(lián)立方程組,結(jié)合得到結(jié)論。

          解:(1)橢圓的頂點(diǎn)為,即

          ,解得, 橢圓的標(biāo)準(zhǔn)方程為 --------4分

          (2)由題可知,直線與橢圓必相交.

          ①當(dāng)直線斜率不存在時,經(jīng)檢驗(yàn)不合題意.                    --------5分

          ②當(dāng)直線斜率存在時,設(shè)存在直線,且,.

          ,       ----------7分

          ,               

             = 

          所以,                               ----------10分

          故直線的方程為 

           

          查看答案和解析>>

          (本小題滿分12分)

          為了解某班學(xué)生喜歡打籃球是否與性別有關(guān),對該班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:

           

          喜歡打籃球

          不喜歡打籃球

          合 計(jì)

          男 生

           

          5

           

          女 生

          10

           

           

          合 計(jì)

           

           

          50

          已知在全部50人中隨機(jī)抽取1人抽到喜歡打籃球的學(xué)生的概率為0.6。

          (Ⅰ)請將上面的列聯(lián)表補(bǔ)充完整;

          (Ⅱ)是否有99%的把握認(rèn)為喜歡打籃球與性別有關(guān)?說明你的理由;

          (Ⅲ)已知不喜歡打籃球的5位男生中,喜歡踢足球,喜歡打羽毛球,喜歡打乒乓球,現(xiàn)在從這5位男生中選取3位進(jìn)行其他方面的調(diào)查,求不全被選中的概率。

          附:1.

          2.在統(tǒng)計(jì)中,用以下結(jié)果對變量的獨(dú)立性進(jìn)行判斷:

          (1)當(dāng)時,沒有充分的證據(jù)判定變量有關(guān)聯(lián),可以認(rèn)為變量是沒有關(guān)聯(lián)的;

          (2)當(dāng)時,有90%的把握判定變量有關(guān)聯(lián);

          (3)當(dāng)時,有95%的把握判定變量有關(guān)聯(lián);

          (4)當(dāng)時,有99%的把握判定變量有關(guān)聯(lián)。

           

           

           

           

           

          查看答案和解析>>


          同步練習(xí)冊答案