日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 由--------------6分∵直線l與橢圓交于A.B兩個不同點. 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓的長軸長為,焦點是,點到直線的距離為,過點且傾斜角為銳角的直線與橢圓交于A、B兩點,使得.

          (1)求橢圓的標(biāo)準(zhǔn)方程;           (2)求直線l的方程.

          【解析】(1)中利用點F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

          得到橢圓的方程。(2)中,利用,設(shè)出點A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標(biāo)的值,然后求解得到直線方程。

          解:(1)∵F1到直線x=-的距離為,∴-.

          ∴a2=4而c=,∴b2=a2-c2=1.

          ∵橢圓的焦點在x軸上,∴所求橢圓的方程為+y2=1.……4分

          (2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問知

          ,

          ……6分

          ∵A、B在橢圓+y2=1上,

          ……10分

          ∴l(xiāng)的斜率為.

          ∴l(xiāng)的方程為y=(x-),即x-y-=0.

           

          查看答案和解析>>

          已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當(dāng)以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標(biāo)得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達(dá)定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當(dāng)m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當(dāng)m=-3時,直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          已知點P在橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)上,F(xiàn)1、F2分別為橢圓C的左、右焦點,滿足|PF1|=6-|PF2|,且橢圓C的離心率為
          5
          3

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若過點Q(1,0)且不與x軸垂直的直線l與橢圓C相交于兩個不同點M、N,在x軸上是否存在定點G,使得
          GM
          GN
          為定值.若存在,求出所有滿足這種條件的點G的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          已知點P在橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)上,F(xiàn)1、F2分別為橢圓C的左、右焦點,滿足|PF1|=6-|PF2|,且橢圓C的離心率為
          5
          3

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)若過點Q(1,0)且不與x軸垂直的直線l與橢圓C相交于兩個不同點M、N,在x軸上是否存在定點G,使得
          GM
          GN
          為定值.若存在,求出所有滿足這種條件的點G的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>


          同步練習(xí)冊答案