日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 查看更多

           

          題目列表(包括答案和解析)

          (本題滿分14分)

          已知實數,曲線與直線的交點為(異于原點),在曲線 上取一點,過點平行于軸,交直線于點,過點平行于軸,交曲線于點,接著過點平行于軸,交直線于點,過點平行于軸,交曲線于點,如此下去,可以得到點,,…,,… .  設點的坐標為,.

          (Ⅰ)試用表示,并證明;   

          (Ⅱ)試證明,且);

          (Ⅲ)當時,求證:  ().

          查看答案和解析>>

          (本題滿分14分)

           已知函數圖象上一點處的切線方程為

          (Ⅰ)求的值;

          (Ⅱ)若方程內有兩個不等實根,求的取值范圍(其中為自然對數的底數);

          (Ⅲ)令,若的圖象與軸交于(其中),的中點為,求證:處的導數

          查看答案和解析>>

          (本題滿分14分)

          已知曲線方程為,過原點O作曲線的切線

          (1)求的方程;

          (2)求曲線,軸圍成的圖形面積S;

          (3)試比較的大小,并說明理由。

          查看答案和解析>>

          (本題滿分14分)

          已知中心在原點,對稱軸為坐標軸的橢圓,左焦點,一個頂點坐標為(0,1)

          (1)求橢圓方程;

          (2)直線過橢圓的右焦點交橢圓于A、B兩點,當△AOB面積最大時,求直線方程。

          查看答案和解析>>

          (本題滿分14分)

          如圖,在直三棱柱中,,,求二面角的大小。    

          查看答案和解析>>

          一、選擇題:

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          二、填空題:

          11. ;      12. ;          13. ;

          14. ;            15. ;        16. ③ ④ .

          三、解答題:

          17.解:(1)在中,由,得,  又由正弦定理: 得:.                                     ……………………4分

          (2)由余弦定理:得:

          ,解得(舍去),所以.       ……8分

           

          所以,

          .                                      …………………12分

          18.解:(1)依題意,雙曲線的方程可設為:、,

                          解之得:,

          所以雙曲線的方程為:.                  ……………………6分

          (2)設、,直線軸交于點,此點即為雙曲線的右焦點,由   消去,得,

          此方程的,

          所以兩點分別在左、右支上,不妨設在左支、在右支上   ………9分

          則由第二定義知:,,     …………11分

          所以

          ,即. ………14分

          (亦可求出、的坐標,用兩點間距離公式求.)

           

          19.(1)當點的中點時,與平面平行.

          ∵在中,、分別為、的中點

             又平面,而平面 

              ∴∥平面.                              ……………………4分

           

          (2)證明(略證):易證平面,又在平面內的射影,,∴.                         ……………………8分

           (3)∵與平面所成的角是,∴,,.

          ,連,則.     …………………10分

          易知:,,設,則,,

          中,,

          .                 ………14分

           

           

           

          解法二:(向量法)(1)同解法一

          (2)建立圖示空間直角坐標系,則,                          ,.

          ,則

                ∴   (本小題4分)

          (3)設平面的法向量為,由,

          得:,

          依題意,∴,

          .                             (本小題6分)

           

          20.解:(1),

          ∴可設,

          因而   ①

            得          ②

          ∵方程②有兩個相等的根,

          ,即  解得 

          由于,(舍去),將 代入 ①  得 的解析式.                                …………………6分

          (2)=

          在區(qū)間內單調遞減,

          上的函數值非正,

          由于,對稱軸,故只需,注意到,∴,得(舍去)

          故所求a的取值范圍是.                     …………………11分

           (3)時,方程僅有一個實數根,即證方程 僅有一個實數根.令,由,得,易知上遞增,在上遞減,的極大值,的極小值,故函數的圖像與軸僅有一個交點,∴時,方程僅有一個實數根,得證.                                    ……………………16分

           

          21.解:(1),                        ……………………1分

          =.                      ……………………4分

          (2),           ……………………5分

          ,………7分

          ∴數列為首項,為公比的等比數列.       ……………………8分

          (3)由(2)知, Sn =, ……………9分

          =∵0<<1,∴>0,,0<<1,,

          ,                                     ……………………11分

          又當時,,∴, ……………………13分

          <.……14分

           


          同步練習冊答案