日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .由.知.又.從而平面, 查看更多

           

          題目列表(包括答案和解析)

          如圖,在三棱柱中,側(cè)面為棱上異于的一點,,已知,求:

          (Ⅰ)異面直線的距離;

          (Ⅱ)二面角的平面角的正切值.

          【解析】第一問中,利用建立空間直角坐標(biāo)系

          解:(I)以B為原點,、分別為Y,Z軸建立空間直角坐標(biāo)系.由于,

          在三棱柱中有

          ,

          設(shè)

          側(cè)面,故. 因此是異面直線的公垂線,則,故異面直線的距離為1.

          (II)由已知有故二面角的平面角的大小為向量的夾角.

           

          查看答案和解析>>

          已知函數(shù)f(x)=ex-ax,其中a>0.

          (1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

          (2)在函數(shù)f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

          【解析】解:.

          當(dāng)單調(diào)遞減;當(dāng)單調(diào)遞增,故當(dāng)時,取最小值

          于是對一切恒成立,當(dāng)且僅當(dāng).       、

          當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞減.

          故當(dāng)時,取最大值.因此,當(dāng)且僅當(dāng)時,①式成立.

          綜上所述,的取值集合為.

          (Ⅱ)由題意知,

          ,則.當(dāng)時,單調(diào)遞減;當(dāng)時,單調(diào)遞增.故當(dāng),

          從而,

          所以因為函數(shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

          【點評】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問利用導(dǎo)函數(shù)法求出取最小值對一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問在假設(shè)存在的情況下進行推理,然后把問題歸結(jié)為一個方程是否存在解的問題,通過構(gòu)造函數(shù),研究這個函數(shù)的性質(zhì)進行分析判斷.

           

          查看答案和解析>>

          已知m>1,直線,橢圓C:、分別為橢圓C的左、右焦點.

          (Ⅰ)當(dāng)直線過右焦點時,求直線的方程;

          (Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.[

          【解析】第一問中因為直線經(jīng)過點,0),所以,得.又因為m>1,所以,故直線的方程為

          第二問中設(shè),由,消去x,得

          則由,知<8,且有

          由題意知O為的中點.由可知從而,設(shè)M是GH的中點,則M().

          由題意可知,2|MO|<|GH|,得到范圍

           

          查看答案和解析>>

          已知等比數(shù)列中,,且,公比,(1)求;(2)設(shè),求數(shù)列的前項和

          【解析】第一問,因為由題設(shè)可知

           故

          ,又由題設(shè)    從而

          第二問中,

          當(dāng)時,,

          時, 

          時,

          分別討論得到結(jié)論。

          由題設(shè)可知

           故

          ,又由題設(shè)   

          從而……………………4分

          (2)

          當(dāng)時,……………………6分

          時,……8分

          時,

           ……………………10分

          綜上可得 

           

          查看答案和解析>>

          仔細(xì)閱讀下面問題的解法:
          設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          解:由已知可得  a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學(xué)習(xí)以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設(shè)g(x)=
          10-x
          10+x
          x∈A,試判斷g(x)的單調(diào)性;(不證)
          (3)又若B={x|
          10-x
          10+x
          >2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案