日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以 .即 查看更多

           

          題目列表(包括答案和解析)

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當(dāng)時,求證:

          (Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

          又因為,………………2分

          ,得證。

          第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

          由此知道a=2,  設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

          又因為,………………3分

          (Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

          設(shè)平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          4. m>2或m<-2 解析:因為f(x)=在(-1,1)內(nèi)有零點,所以f(-1)f(1)<0,即(2+m)(2-m)<0,則m>2或m<-2

          隨機變量的所有等可能取值為1,2…,n,若,則(    )

          A. n=3        B.n=4          C. n=5        D.不能確定

          5.m=-3,n=2 解析:因為的兩零點分別是1與2,所以,即,解得

          6.解析:因為只有一個零點,所以方程只有一個根,因此,所以

          查看答案和解析>>

          ⊙O1和⊙O2的極坐標(biāo)方程分別為

          ⑴把⊙O1和⊙O2的極坐標(biāo)方程化為直角坐標(biāo)方程;

          ⑵求經(jīng)過⊙O1,⊙O2交點的直線的直角坐標(biāo)方程.

          【解析】本試題主要是考查了極坐標(biāo)的返程和直角坐標(biāo)方程的轉(zhuǎn)化和簡單的圓冤啊位置關(guān)系的運用

          (1)中,借助于公式,,將極坐標(biāo)方程化為普通方程即可。

          (2)中,根據(jù)上一問中的圓的方程,然后作差得到交線所在的直線的普通方程。

          解:以極點為原點,極軸為x軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長度單位.

          (I),由.所以

          為⊙O1的直角坐標(biāo)方程.

          同理為⊙O2的直角坐標(biāo)方程.

          (II)解法一:由解得,

          即⊙O1,⊙O2交于點(0,0)和(2,-2).過交點的直線的直角坐標(biāo)方程為y=-x.

          解法二: 由,兩式相減得-4x-4y=0,即過交點的直線的直角坐標(biāo)方程為y=-x

           

          查看答案和解析>>

          考察等式:(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學(xué)用概率論方法證明等式(*)如下:
          設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機取出r件產(chǎn)品,
          記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則,k=0,1,2,…,r.
          顯然A,A1,…,Ar為互斥事件,且A∪A1∪…∪Ar=Ω(必然事件),
          因此1=P(Ω)=P(A)+P(A1)+…P(Ar)=,
          所以,即等式(*)成立.
          對此,有的同學(xué)認(rèn)為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學(xué)對上述證明方法的科學(xué)性與嚴(yán)謹(jǐn)性提出質(zhì)疑.現(xiàn)有以下四個判斷:
          ①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
          試寫出所有正確判斷的序號   

          查看答案和解析>>

          設(shè)橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標(biāo)原點.

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點P的坐標(biāo)為.由題意,有  ①

          ,得,

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

          由條件得消去并整理得  ②

          ,,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點P的坐標(biāo)為.

          由P在橢圓上,有

          因為,,所以,即   ③

          ,,得整理得.

          于是,代入③,

          整理得

          解得,

          所以.

           

          查看答案和解析>>


          同步練習(xí)冊答案