日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 即 .所以< .又存在正零點(diǎn). 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=x2,,g(x)=x-1.
          (1)已知函數(shù)ψ(x)=logmx-2x,如果h(x)=
          12
          f(x)+ψ(x)
          是增函數(shù),且h(x)的導(dǎo)函數(shù)h'(x)存在正零點(diǎn),求m的值.
          (2)設(shè)F(x)=f(x)-tg(x)+1-t-t2,且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)t的取值范圍.
          (3)試求實(shí)數(shù)p的個(gè)數(shù),使得對(duì)于每個(gè)p,關(guān)于x的方程xf(x)=pg(x)+2p+1都有滿足|x|<2009的偶數(shù)根.

          查看答案和解析>>

          (09年揚(yáng)州中學(xué)2月月考)(16分)已知函數(shù)

          (1)已知函數(shù),如果是增函數(shù),且的導(dǎo)函數(shù)存在正零點(diǎn),求的值

          (2)設(shè),且上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

          (3)試求實(shí)數(shù)的個(gè)數(shù),使得對(duì)于每個(gè),關(guān)于x的方程 都有滿足的偶數(shù)根

          查看答案和解析>>

          已知函數(shù)f(x)=x2,,g(x)=x-1.
          (1)已知函數(shù)ψ(x)=logmx-2x,如果是增函數(shù),且h(x)的導(dǎo)函數(shù)h'(x)存在正零點(diǎn),求m的值.
          (2)設(shè)F(x)=f(x)-tg(x)+1-t-t2,且|F(x)|在[0,1]上單調(diào)遞增,求實(shí)數(shù)t的取值范圍.
          (3)試求實(shí)數(shù)p的個(gè)數(shù),使得對(duì)于每個(gè)p,關(guān)于x的方程xf(x)=pg(x)+2p+1都有滿足|x|<2009的偶數(shù)根.

          查看答案和解析>>

          已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,,為數(shù)列的前n項(xiàng)和.

          (1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

          (2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

          (3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請(qǐng)說(shuō)明理由.

          【解析】第一問(wèn)利用在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿足,

          第二問(wèn),①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號(hào)在n=2時(shí)取得.

          此時(shí) 需滿足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿足

          第三問(wèn),

               若成等比數(shù)列,則,

          即.

          ,可得,即,

                  .

          (1)(法一)在中,令n=1,n=2,

             即      

          解得,, [

          時(shí),滿足,

          (2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

           ,等號(hào)在n=2時(shí)取得.

          此時(shí) 需滿足.  

          ②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

           是隨n的增大而增大, n=1時(shí)取得最小值-6.

          此時(shí) 需滿足

          綜合①、②可得的取值范圍是

          (3),

               若成等比數(shù)列,則,

          即.

          ,可得,即,

          ,且m>1,所以m=2,此時(shí)n=12.

          因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

           

          查看答案和解析>>

          已知數(shù)列是首項(xiàng)為的等比數(shù)列,且滿足.

          (1)   求常數(shù)的值和數(shù)列的通項(xiàng)公式;

          (2)   若抽去數(shù)列中的第一項(xiàng)、第四項(xiàng)、第七項(xiàng)、……、第項(xiàng)、……,余下的項(xiàng)按原來(lái)的順序組成一個(gè)新的數(shù)列,試寫(xiě)出數(shù)列的通項(xiàng)公式;

          (3) 在(2)的條件下,設(shè)數(shù)列的前項(xiàng)和為.是否存在正整數(shù),使得?若存在,試求所有滿足條件的正整數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.

          【解析】第一問(wèn)中解:由,,

          又因?yàn)榇嬖诔?shù)p使得數(shù)列為等比數(shù)列,

          ,所以p=1

          故數(shù)列為首項(xiàng)是2,公比為2的等比數(shù)列,即.

          此時(shí)也滿足,則所求常數(shù)的值為1且

          第二問(wèn)中,解:由等比數(shù)列的性質(zhì)得:

          (i)當(dāng)時(shí),

          (ii) 當(dāng)時(shí),,

          所以

          第三問(wèn)假設(shè)存在正整數(shù)n滿足條件,則,

          則(i)當(dāng)時(shí),

           

          查看答案和解析>>


          同步練習(xí)冊(cè)答案