日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19.解:(1)由題意 查看更多

           

          題目列表(包括答案和解析)

          已知橢圓的離心率為,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線相切.

          (I)求橢圓的方程;

          (II)若過點(diǎn)(2,0)的直線與橢圓相交于兩點(diǎn),設(shè)為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng) 時(shí),求實(shí)數(shù)的取值范圍.

          【解析】本試題主要考查了橢圓的方程以及直線與橢圓的位置關(guān)系的運(yùn)用。

          第一問中,利用

          第二問中,利用直線與橢圓聯(lián)系,可知得到一元二次方程中,可得k的范圍,然后利用向量的不等式,表示得到t的范圍。

          解:(1)由題意知

           

          查看答案和解析>>

          如圖,已知圓錐體的側(cè)面積為,底面半徑互相垂直,且是母線的中點(diǎn).

          (1)求圓錐體的體積;

          (2)異面直線所成角的大小(結(jié)果用反三角函數(shù)表示).

          【解析】本試題主要考查了圓錐的體積和異面直線的所成的角的大小的求解。

          第一問中,由題意,,故

          從而體積.2中取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

          由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.在OAH中,由OAOB得;

          中,,PH=1/2SB=2,

          ,所以異面直線SO與P成角的大arctan

          解:(1)由題意,,

          從而體積.

          (2)如圖2,取OB中點(diǎn)H,聯(lián)結(jié)PH,AH.

          由P是SB的中點(diǎn)知PH//SO,則(或其補(bǔ)角)就是異面直線SO與PA所成角.

          由SO平面OAB,PH平面OAB,PHAH.

          OAH中,由OAOB得

          中,,PH=1/2SB=2,,

          ,所以異面直線SO與P成角的大arctan

           

          查看答案和解析>>

          在等比數(shù)列中,,;

          (1)求數(shù)列的通項(xiàng)公式; (2)求數(shù)列的前項(xiàng)和

          【解析】第一問中利用等比數(shù)列中,,兩項(xiàng)確定通項(xiàng)公式即可

          第二問中,在第一問的基礎(chǔ)上,然后求和。

          解:(1)由題意得到:

                 ……6分

          (2)      ……①

             …… ②

          ①-②得到

           

          查看答案和解析>>

          如圖,,,…,,…是曲線上的點(diǎn),,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

          (1)寫出之間的等量關(guān)系,以及之間的等量關(guān)系;

          (2)求證:);

          (3)設(shè),對所有恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問利用有,得到

          第二問證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,

          第三問 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

          解:(1)依題意,有,,………………4分

          (2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

          ②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

          則當(dāng)時(shí),由歸納假設(shè)及,

          解得不合題意,舍去)

          即當(dāng)時(shí),命題成立.  …………………………………………4分

          綜上所述,對所有,.    ……………………………1分

          (3) 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>

          已知數(shù)列滿足,

          (1)求證:數(shù)列是等比數(shù)列;

          (2)求數(shù)列的通項(xiàng)和前n項(xiàng)和

          【解析】第一問中,利用,得到從而得證

          第二問中,利用∴ ∴分組求和法得到結(jié)論。

          解:(1)由題得 ………4分

                              ……………………5分

             ∴數(shù)列是以2為公比,2為首項(xiàng)的等比數(shù)列;   ……………………6分

          (2)∴                                  ……………………8分

               ∴                                  ……………………9分

               ∴

           

          查看答案和解析>>


          同步練習(xí)冊答案