日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ∴二面角的正弦值為-------------12分 查看更多

           

          題目列表(包括答案和解析)

          已知三棱錐A-BCD中,∠BCD=90°,BC=CD=1,AB⊥面BCD,∠ADB=60°,點E、F分別在AC、AD上,使面BEF⊥ACD,且EF∥CD,則平面BEF與平面BCD所成的二面角的正弦值為( 。

          查看答案和解析>>

          正四棱錐側(cè)棱與底面成45°角,則側(cè)面與底面所成二面角的正弦值為( 。
          A、
          6
          5
          B、
          6
          6
          C、
          6
          3
          D、
          6
          4

          查看答案和解析>>

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

          (Ⅰ)證明PC⊥AD;

          (Ⅱ)求二面角A-PC-D的正弦值;

          (Ⅲ)設(shè)E為棱PA上的點,滿足異面直線BE與CD所成的角為30°,求AE的長.

           

          【解析】解法一:如圖,以點A為原點建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

          (1)證明:易得于是,所以

          (2) ,設(shè)平面PCD的法向量,

          ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

          所以二面角A-PC-D的正弦值為.

          (3)設(shè)點E的坐標(biāo)為(0,0,h),其中,由此得.

          ,故 

          所以,,解得,即.

          解法二:(1)證明:由,可得,又由,,故.又,所以.

          (2)如圖,作于點H,連接DH.由,,可得.

          因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

          因此所以二面角的正弦值為.

          (3)如圖,因為,故過點B作CD的平行線必與線段AD相交,設(shè)交點為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

          中,由,,

          可得.由余弦定理,,

          所以.

           

          查看答案和解析>>

          (本小題滿分12分)

          如圖,在正三棱柱

          (I)若,求點到平面的距離;

          (Ⅱ)當(dāng)為何值時,二面角的正弦值為?

           

          查看答案和解析>>

          (08年溫州八校適應(yīng)性考試三) (14分)如圖,正三棱柱中,中點.AB=2

          (Ⅰ)求證://平面;

          (Ⅱ) 當(dāng)為何值時,二面角的正弦值為?

          查看答案和解析>>


          同步練習(xí)冊答案