日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 16.若數(shù)列滿足(為常數(shù)).則稱數(shù)列為調(diào)和數(shù)列.已知數(shù)列為調(diào)和數(shù)列.且.則= . 20090508 查看更多

           

          題目列表(包括答案和解析)

          若實數(shù)滿足,且,則稱互補,記那么

          與b互補的

            A.必要而不充分條件                 B.充分而不必要條件 

            C.充要條件                         D.既不充分也不必要條件

          查看答案和解析>>

          設(shè)Sn是數(shù)列{an} 的前n項和,若
          S2nSn
          (n∈N*)
          是非零常數(shù),則稱數(shù)列{an} 為“和等比數(shù)列”.
          (1)若數(shù)列{2bn}是首項為2,公比為4的等比數(shù)列,則數(shù)列 {bn}
           
          (填“是”或“不是”)“和等比數(shù)列”;
          (2)若數(shù)列{cn}是首項為c1,公差為d(d≠0)的等差數(shù)列,且數(shù)列 {cn} 是“和等比數(shù)列”,則d與c1之間滿足的關(guān)系為
           

          查看答案和解析>>

          若數(shù)列{an}滿足an+12-an2=d,其中d為常數(shù),則稱數(shù)列{an}為等方差數(shù)列.已知等方差數(shù)列{an}滿足an>0,a1=1,a5=3.
          (1)求數(shù)列{an}的通項公式.
          (2)求數(shù)列{
          a
          2
          n
          (
          1
          2
          )n}
          的前n項和.
          (3)記bn=nan2,則當(dāng)實數(shù)k大于4時,不等式kbn大于n(4-k)+4能否對于一切的n∈N*恒成立?請說明理由.

          查看答案和解析>>

          (2012•甘肅一模)若數(shù)列{an}滿足
          1
          an+1
          -
          1
          an
          =d(n∈N*,d為常數(shù))
          ,則稱數(shù)列{an}為“調(diào)和數(shù)列”.已知正項數(shù)列{
          1
          bn
          }
          為“調(diào)和數(shù)列”,且b1+b2+…+b9=90,則b4•b6的最大值是(  )

          查看答案和解析>>

          (2012•安徽模擬)如果一個數(shù)列的各項都是實數(shù),且從第二項起,每一項與它的前一項的平方差是同一個常數(shù),則稱該數(shù)列為等方差數(shù)列,這個常數(shù)叫這個數(shù)列的公方差.
          (Ⅰ)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,求證:該數(shù)列是常數(shù)列;
          (Ⅱ)已知數(shù)列{an}是首項為2,公方差為2的等方差數(shù)列,數(shù)列{bn}的前n項和為Sn,且滿足an2=2n+1bn.若不等式2nSn>m•2n-2an2對?n∈N*恒成立,求m的取值范圍.

          查看答案和解析>>

          一、

          C A CBC     A D AB D     B A

          二、

          13.5;   14.;     15. 36;      16.20

          三、

          17.解:(1)依題意得:

          所以:,……4分

            1. 20090508

              (2)設(shè),則,

              由正弦定理:,

              所以兩個正三角形的面積和,…………8分

              ……………10分

              ,

              所以:………………………………………………………………12分

              18.解:(1);……………………6分

              (2)消費總額為1500元的概率是:……………………7分

              消費總額為1400元的概率是:………8分

              消費總額為1300元的概率是:

              ,…11分

              所以消費總額大于或等于1300元的概率是;……………………12分

              19.(1)證明:因為,所以平面

              又因為,

              平面,

              平面平面;…………………4分

              (2)因為,所以平面,所以點到平面的距離等于點E到平面的距離,

              過點E作EF垂直CD且交于點F,因為平面平面,所以平面,

              所以的長為所求,………………………………………………………………………6分

              因為,所以為二面角的平面角,,

              =1,

              到平面的距離等于1;…………………………………………………………8分

              (3)連接,由平面,得到

              所以是二面角的平面角,

              ,…………………………………………………………………11分

              二面角大小是!12分

              20.解:(1)設(shè)等差數(shù)列的公差為,依題意得:

              解得,所以,…………………3分

              所以

              ,

              所以;…………………………………………………………………6分

              (2),因為,所以數(shù)列是遞增數(shù)列,…8分

              當(dāng)且僅當(dāng)時,取得最小值,

              則:

              所以,即的取值范圍是!12分

              21.解:(1)設(shè)點的坐標(biāo)為,則點的坐標(biāo)為,點的坐標(biāo)為

              因為,所以,得到:,注意到不共線,所以軌跡方程為;…………………………………5分

              (2)設(shè)點是軌跡C上的任意一點,則以為直徑的圓的圓心為,

              假設(shè)滿足條件的直線存在,設(shè)其方程為,直線被圓截得的弦為,

               

              …………………………………………7分

              弦長為定值,則,即,

              此時,……………………………………………………9分

              所以當(dāng)時,存在直線,截得的弦長為,

                  當(dāng)時,不存在滿足條件的直線。……………………………………………12分

              22.解:(1),

              ,……2分

              因為當(dāng)時取得極大值,所以

              所以的取值范圍是:;………………………………………………………4分

              (2)由下表:

              0

              0

              遞增

              極大值

              遞減

              極小值

              遞增

              ………………………7分

              畫出的簡圖:

              依題意得:

              解得:,

              所以函數(shù)的解析式是:

              ;……9分

              (3)對任意的實數(shù)都有

              ,

              依題意有:函數(shù)在區(qū)間

              上的最大值與最小值的差不大于

              ………10分

              在區(qū)間上有:

              ,

              的最大值是,

              的最小值是,……13分

              所以

              的最小值是!14分

               

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>