日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)設(shè)直線與曲線C交于點A.B.問在直線上是否存在于b無關(guān)的定點M.使得直線MA.MB關(guān)于直線對稱.若存在.求出點M的坐標(biāo).若不存在.請說明理由. 查看更多

           

          題目列表(包括答案和解析)

          已知曲線C上任一點P到直線x=1與點F(-1,0)的距離相等.
          (1)求曲線C的方程;
          (2)設(shè)直線y=x+b與曲線C交于點A,B,問在直線l:y=2上是否存在與b無關(guān)的定點M,使得直線MB與MA關(guān)于直線l對稱,若存在,求出點M的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          已知曲線C上任一點P到直線x=1與點F(-1,0)的距離相等.
          (1)求曲線C的方程;
          (2)設(shè)直線y=x+b與曲線C交于點A,B,問在直線l:y=2上是否存在與b無關(guān)的定點M,使得直線MB與MA關(guān)于直線l對稱,若存在,求出點M的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          已知曲線C上任一點P到直線x=1與點F(-1,0)的距離相等.
          (1)求曲線C的方程;
          (2)設(shè)直線y=x+b與曲線C交于點A,B,問在直線l:y=2上是否存在與b無關(guān)的定點M,使得直線MB與MA關(guān)于直線l對稱,若存在,求出點M的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          已知曲線C上任一點P到直線x=1與點F(-1,0)的距離相等.
          (1)求曲線C的方程;
          (2)設(shè)直線y=x+b與曲線C交于點A,B,問在直線l:y=2上是否存在與b無關(guān)的定點M,使得直線MB與MA關(guān)于直線l對稱,若存在,求出點M的坐標(biāo),若不存在,請說明理由.

          查看答案和解析>>

          (2011•洛陽二模)已知點M(-5,0),F(xiàn)(1,0),點K滿足
          MK
          =2
          KF
          ,P是平面內(nèi)一動點,且滿足|
          PF
          |•|
          KF
          |=
          PK
          FK

          (1)求P點的軌跡C的方程;
          (2)過點F作兩條斜率存在且互相垂直的直線l1,l2,設(shè)l1與曲線C相交于點A,B,l2與曲線C相交于點D,E,求四邊形ADBE的面積的最小值.

          查看答案和解析>>

          一、選擇題:

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          A

          D

          A

          D

          C

          A

          D

          C

          B

          D

          B

          C

          二、填空題:

          13、    14、   15、等;  16、7

          三、解答題

          17、(1)由余弦定理:   又

              ∴

          (2)∵A+B+C=   ∴

          18、(1)  (2)

          19、(1)AC=1,BC=2 ,AB= ,∴∴AC

          又  平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC

          又∵PA平面APC     ∴

          (2)該幾何體的主試圖如下:

           

          幾何體主試圖的面積為

               ∴   ∴

           

           

          (3)取PC 的中點N,連接AN,由△PAC是邊長為1的正三角形,可知

          由(1)BC平面PAC,可知   ∴平面PCBM

          20、(1)的最小值為

          (2)a的取值范圍是

          21、(1)曲線C的方程為

          (2),存在點M(―1,2)滿足題意

          22、(1)由于點B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直線

            因此,所以是等差數(shù)列

          (2)由已知有  同理 

             

            

          (3)由(2)得,則

          由于  而

          ,從而

          同理:……

          以上個不等式相加得:

          ,從而

           

           

           

           


          同步練習(xí)冊答案