日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 判斷與的大小.并證明你的結(jié)論. 安徽省蚌埠市2009屆高三年級第一次教學(xué)質(zhì)量檢查考試 查看更多

           

          題目列表(包括答案和解析)

          已知數(shù)列{an}是等比數(shù)列,a1=2,a3=18;數(shù)列{bn}是等差數(shù)列,b1=2,b1+b2+b3+b4=a1+a2+a3>20,
          (Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
          (Ⅱ)求數(shù)列{bn}的前n項(xiàng)和Sn;
          (Ⅲ)設(shè)Pn=b1+b4+b7+…+b3n-2,Qn=b10+b12+b14+…+b2n+8(n∈N*),比較Pn與Qn大小,并證明你的結(jié)論。

          查看答案和解析>>

          函數(shù)y=ex(e為自然對數(shù)的底數(shù))的圖象向下平移b(0<b,b≠1)個(gè)單位后得到的圖象記為Cb,Cb與x軸交于Ab點(diǎn),與y軸交于Bb點(diǎn),O為坐標(biāo)原點(diǎn)
          (1)寫出Cb的解析式和Ab,Bb兩點(diǎn)的坐標(biāo)
          (2)判斷線段OAb,OBb長度大小,并證明你的結(jié)論
          (3)是否存在兩個(gè)互不相等且都不等于1的正實(shí)數(shù)m,n,使得Rt△OAmBm與Rt△OAnBn相似,如果相似,能否全等?證明你的結(jié)論.

          查看答案和解析>>

          已知f(x)=2x-
          1
          2
          x2,g(x)=logax(a>0且a≠1),h(x)=f(x)-g(x)在定義域上為減函數(shù),且其導(dǎo)函數(shù)h(x)存在零點(diǎn).
          (I)求實(shí)數(shù)a的值;
          (II)函數(shù)y=p(x)的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,且y=p(x)為函數(shù)y=p(x)的導(dǎo)函數(shù),A(x1,y1),B(x2,y2),(x1<x2)是函數(shù)y=p(x)圖象上兩點(diǎn),若p(x0)=
          y1-y2
          x1-x2
          ,判斷P(x0),,P(x1),P(x2)的大小,并證明你的結(jié)論.

          查看答案和解析>>

          已知a>0,b>0,判斷a3+b3與a2b+ab2的大小,并證明你的結(jié)論.

          查看答案和解析>>

          已知點(diǎn)B1(1,y1),B2(2,y2),…,Bn(n,yn)(n∈N*)在直線y=
          1
          2
          x+1
          上,點(diǎn)A1(x1,0),A2(x2,0),A3(x3,0),…,An(xn,0)順次為x軸上的點(diǎn),其中x1=a(0<a<1),對于任意n∈N*,點(diǎn)An,Bn,An+1構(gòu)成以∠Bn為頂角的等腰三角形,設(shè)△AnBnAn+1的面積為Sn
          (1)證明:數(shù)列{yn}是等差數(shù)列;
          (2)求S2n-1(用a和n的代數(shù)式表示);
          (3)設(shè)數(shù)列{
          1
          S2n-1S2n
          }
          前n項(xiàng)和為Tn,判斷Tn
          8n
          3n+4
          (n∈N*)的大小,并證明你的結(jié)論.

          查看答案和解析>>

          一、選擇題:

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          11

          12

          答案

          A

          D

          C

          D

          C

          A

          B

          C

          B

          D

          B

          C

          二、填空題:

          13、    14、8    15、等;  16、7

          三、解答題

          17、(1)由余弦定理:   又

              ∴

          (2)∵A+B+C=   ∴

          18、(1)周銷售量為2噸,3噸,4噸的頻率分別為0.2,0.5,和0.3。

          (2)可能的值為8,10,12,14,16

               

          8

          10

          12

          14

          16

          P

          0.04

          0.2

          0.37

          0.3

          0.09

          的分布列為

           

           

          (千元)

          19、(1)AC=1,BC=2 ,AB= ,∴∴AC

          又  平面PAC平面ABC,平面PAC平面ABC=AC,∴BC平面PAC

          又∵PA平面APC     ∴

          (2)該幾何體的主試圖如下:

           

          幾何體主試圖的面積為

               ∴   ∴

           

           

          (3)取PC 的中點(diǎn)N,連接AN,由△PAC是邊長為1的正三角形,可知

          由(1)BC平面PAC,可知   ∴平面PCBM

          20、(1)要使得不等式能成立,只需

            ∴

          ,故實(shí)數(shù)m的最小值為1

          (2)由

             ∵,列表如下:

          x

          0

          (0,1)

          1

          (1,2)

          2

           

          0

           

          1

          減函數(shù)

          增函數(shù)

          3-2ln3

          21、(1)曲線C的方程為

          (2),存在點(diǎn)M(―1,2)滿足題意

          22、(1)由于點(diǎn)B1(1,y1),B2(2,y2),…,Bn(n,yn)()在直線

            因此,所以是等差數(shù)列

          (2)由已知有  同理 

             

            

          (3)由(2)得,則

          由于  而

          ,從而

          同理:……

          以上個(gè)不等式相加得:

          ,從而

           

           

           

           


          同步練習(xí)冊答案