日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (Ⅰ)求函數(shù)的值域, 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=sin( x+
          π
          6
          )+sin(x-
          π
          6
          )+cosx+a的最大值為1.
          (1)求常數(shù)a的值;
          (2)求使f (x)≥0成立的x的取值集合;
          (3)若 x∈[0,π],求函數(shù)的值域.

          查看答案和解析>>

          已知函數(shù)y=(
          1
          4
          )x-(
          1
          2
          )x+1
          的定義域?yàn)閇-3,2],
          (1)求函數(shù)的單調(diào)區(qū)間;
          (2)求函數(shù)的值域.

          查看答案和解析>>

          已知函數(shù)f(x)=x(x+
          3
          )(x-a)
          為定義在R上的奇函數(shù),
          (1)求a的值并求y=f(x)的單調(diào)區(qū)間;
          (2)當(dāng)x∈[0,m]時(shí),求函數(shù)的值域.

          查看答案和解析>>

          (文) (本小題滿分12分已知函數(shù)y=4-2
          3
          sinx•cosx-2sin2x(x∈R)
          ,
          (1)求函數(shù)的值域和最小正周期;
          (2)求函數(shù)的遞減區(qū)間.

          查看答案和解析>>

          對于二次函數(shù)y=x2+2x-3,
          (1)指出圖象的開口方向、對稱軸方程、頂點(diǎn)坐標(biāo);
          (2)分析函數(shù)的單調(diào)性;
          (3)當(dāng)x∈[-2,3]時(shí),求函數(shù)的值域.

          查看答案和解析>>

          一、選擇題

             D  A  A  C  D    C  D  C  B  B

          二、填空題:

          11.     12.     13.81     14.   15.②③

          三、解答題: 

          16.解:把函數(shù)按向量平移后得..............2分

          (Ⅰ)=..................3分

          ............5分

          則函數(shù)的值域?yàn)?sub>;.....................7分

          (Ⅱ)當(dāng)時(shí),,

            .............................................9分

           恒有解,,..................................11分

          ....................................................12分

           

          17.解:(Ⅰ)設(shè)三角形三內(nèi)角A、B、C對應(yīng)的三邊分別為a, b, c,

          ,∴,由正弦定理有,

          又由余弦定理有,∴,即,

          所以為Rt,且 .................................. 3分

          (1)÷(2),得...................................... 4分

          令a=4k, b=3k (k>0)

          ∴三邊長分別為3,4,5.....................6分

          (Ⅱ)以C為坐標(biāo)原點(diǎn),射線CA為x軸正半軸建立直角坐標(biāo)系,則A、B坐標(biāo)為(3,0),(0,4),直線AB方程為

          設(shè)P點(diǎn)坐標(biāo)為(x, y),則由P到三邊AB、BC、AB的距離為d1, d2和d3可知

          ,..................................8分

          .......................10分

          ,由線性規(guī)劃知識可知0≤m≤8,故d1+d2+d3的取值范圍是......12分

           

          18.解:(Ⅰ)當(dāng)

                              ………………2分

          ,..............................................5分

                  ................6分

          定義域?yàn)?sub>     .................................7分

             (Ⅱ)對于,            

          顯然當(dāng)(元),    ..................................9分

          ∴當(dāng)每輛自行車的日租金定在11元時(shí),才能使一日的凈收入最多。..........12分

           

          19.解: (Ⅰ) ∵(1)=0

          ∴(an+2-an+1)-(3a n+1-4an)=0

          即an+2-2an+1=2(an+1-2an)    又a22a1=4

          ∴數(shù)列{an+1-2an}是以2為公比,以4為首項(xiàng)的等比數(shù)列。...............2分

          ∴an+1-2an=4×2n-1=2 n+1

              且

          ∴數(shù)列{}是首項(xiàng)為1,公差為1的等差數(shù)列,....................4分

          +(n-1)×1=n

          .....................................................6分

              (Ⅱ)由,

                  令Sn=|b1|+|b2|+…+|bn|=+2()2+3()3+…+n()n

                Sn=()2+2()3+…+(n-1)()n+n()n+1.......................8分

          得Sn=+()2+()3+…+()n-n()n+1

          =-n()n+1=2[1-()n]-n()n+1

          ∴ Sn=6[1-()n]-3n()n+1.....................10分

          要使得|b1|+|b2|+…+|bn|<m對于n∈N恒成立,只須

             所以實(shí)數(shù)的取值范圍是。.......................................12分

           

          20.解:(Ⅰ)因?yàn)?sub>

          是函數(shù)的極值點(diǎn),,即..............2分

          ,則............4分

          .........................................................6分

          (Ⅱ)由(Ⅰ)可知

          .................................8分

          ,當(dāng)時(shí),得

          則當(dāng)時(shí),;當(dāng)時(shí),,

          所以上單調(diào)遞減,在單調(diào)遞增,..................10分

          時(shí),,又,..................................12分

          即對任意,恒有。..................................13分

           

           

           

          21.解:(Ⅰ) 以AB所在直線為x軸,線段AB的中垂線為y軸建立直角坐標(biāo)系,

          設(shè) |CA|+|CB|=2a(a>3)為定值,所以C點(diǎn)的軌跡是以A、B為焦點(diǎn)的橢圓,

          所以焦距 2c=|AB|=6. ...................................................2分

           因?yàn)?

          ,所以

          由題意得 ...........................................4分

          此時(shí),|PA|=|PB|,P點(diǎn)坐標(biāo)為 P(0,±4).

          所以C點(diǎn)的軌跡方程為   .............................6分

          (Ⅱ)不妨設(shè)A點(diǎn)坐標(biāo)為A(-3,0),M(x1,y1),N(x2,y2)

          (1)當(dāng)直線MN的傾斜角不為900時(shí),設(shè)其方程為 y=k(x+3) 代入橢圓方程化簡,得 .......................................7分

          顯然有 △≥0, 所以

          而由橢圓第二定義可得

                                                      ......................... 10分

          只要考慮 的最小值,即考慮取最小值,顯然.

          當(dāng)k=0時(shí),取最小值16. .................................12分

          (2)當(dāng)直線MN的傾斜角為900時(shí),x1=x2=-3,得 .....12分

          ,故,這樣的M、N不存在,即的最小值的集合為空集............................................................14分

           


          同步練習(xí)冊答案