日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ⑴.求, 查看更多

           

          題目列表(包括答案和解析)

          已知y=f(x)是定義在[-1,1]上的奇函數(shù),x∈[0,1]時,f(x)=
          4x+a
          4x+1

          (Ⅰ)求x∈[-1,0)時,y=f(x)解析式,并求y=f(x)在x∈[0,1]上的最大值;
          (Ⅱ)解不等式f(x)>
          1
          5

          查看答案和解析>>

          在△ABC中,角A,B,C所對的邊分別為a,b,c,且1+
          tanA
          tanB
          =
          2c
          b

          (1)求角A.
          (2)若
          m
          =(0,-1)
          ,
          n
          =(cosB,2cos2
          C
          2
          )
          ,試求|
          m
          +
          n
          |的最小值.

          查看答案和解析>>

          已知數(shù)列{an}的前n項和為Sn,a1=1,a2=2,且點(Sn,Sn+1)在直線y=kx+1上
          (Ⅰ)求k的值;
          (Ⅱ)求證:{an}是等比數(shù)列;
          (Ⅲ)記Tn為數(shù)列{Sn}的前n項和,求T10的值.

          查看答案和解析>>

          精英家教網(wǎng)如圖,某機場建在一個海灣的半島上,飛機跑道AB的長為4.5km,且跑道所在的直線與海岸線l的夾角為60°(海岸線可以看作是直線),跑道上離海岸線距離最近的點B到海岸線的距離BC=4
          3
          km.D為海灣一側(cè)海岸線CT上的一點,設(shè)CD=x(km),點D對跑道AB的視角為θ.
          (1)將tanθ 表示為x的函數(shù);
          (2)求點D的位置,使θ取得最大值.

          查看答案和解析>>

          已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
          g(x)
          x

          (Ⅰ)求a,b的值;
          (Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實數(shù)k的范圍;
          (Ⅲ)方程f(|2x-1|)+k(
          2
          |2x-1|
          -3)=0
          有三個不同的實數(shù)解,求實數(shù)k的范圍.

          查看答案和解析>>

          題號

          1

          2

          3

          4

          5

          6

          7

          8

          9

          10

          答案

          D

          C

          D

          B

          C

          A

          C

          B

          D

          B

          11、2;12、;13、;14、;15、;16、

          17、解:(1)
          ,   (6分)
          的最小正周期為.                                 (8分)
          (2)∵,∴,
          .                               (12分)

          18、解:(1)表示取出的三個球中數(shù)字最大者為3.

          ①三次取球均出現(xiàn)最大數(shù)字為3的概率

          ②三取取球中有2次出現(xiàn)最大數(shù)字3的概率

          ③三次取球中僅有1次出現(xiàn)最大數(shù)字3的概率

          .   ……………………………………………………6分

          (2)在時, 利用(1)的原理可知:

          ,(=1,2,3,4)

           的概率分布為:

           

           

           

          =1×+2×+3×+4× = .………………………………………………12分

          19、解:(Ⅰ)作,垂足為,連結(jié),由側(cè)面底面,得底面

          因為,所以,

          ,故為等腰直角三角形,

          由三垂線定理,得

          (Ⅱ)由(Ⅰ)知,依題設(shè),

          ,由,,得

          ,

          的面積

          連結(jié),得的面積

          設(shè)到平面的距離為,由于,得

          ,

          解得

          設(shè)與平面所成角為,則

          所以,直線與平面所成的我為

          20、解:(I)由題意知,因此,從而

          又對求導(dǎo)得

          由題意,因此,解得

          (II)由(I)知),令,解得

          時,,此時為減函數(shù);

          時,,此時為增函數(shù).

          因此的單調(diào)遞減區(qū)間為,而的單調(diào)遞增區(qū)間為

          (III)由(II)知,處取得極小值,此極小值也是最小值,要使)恒成立,只需

          ,從而,

          解得

          所以的取值范圍為

          21、解:(Ⅰ)解法一:易知

          所以,設(shè),則

          因為,故當,即點為橢圓短軸端點時,有最小值

          ,即點為橢圓長軸端點時,有最大值

          解法二:易知,所以,設(shè),則

          (以下同解法一)

          (Ⅱ)顯然直線不滿足題設(shè)條件,可設(shè)直線,

          聯(lián)立,消去,整理得:

          得:

          ,即  ∴

          故由①、②得

          22、(I)解:方程的兩個根為,

          時,

          所以;

          時,,,

          所以;

          時,,

          所以時;

          時,,,

          所以

          (II)解:

          (III)證明:

          所以,

          時,

          ,

          同時,

          綜上,當時,

           

           

           


          同步練習(xí)冊答案