題目列表(包括答案和解析)
(本小題滿分12分)如圖,在三棱錐P-ABC中,,
,點(diǎn)
分別是AC、PC的中點(diǎn),
底面ABC.
(1)求證:平面
;
(2)當(dāng)時(shí),求直線
與平面
所成的角的大。
(3)當(dāng)取何值時(shí),
在平面
內(nèi)的射影恰好為
的重心?
|
(本小題滿分12分)
如圖甲,直角梯形ABCD中,AB∥CD,,點(diǎn)M、N分別在AB、CD上,且MN⊥AB,MC⊥CB,BC=2,MB=4,現(xiàn)將梯形ABCD沿MN折起,使平面AMND與平面MNCB垂直(如圖乙)
(1)求證:AB∥平面DNC;
(2)當(dāng)DN的長(zhǎng)為何值時(shí),二面角D-BC-N的大小為?
(本小題滿分12分)
如圖,在斜邊為AB的Rt△ABC,過A作PA⊥平面ABC,AE⊥PB于E,AF⊥PC于F.
(1)求證:BC⊥平面PAC.
(2)求證:PB⊥平面AEF.
(3)若AP=AB=2,試用tgθ(∠BPC=θ)表示△AEF的面積、當(dāng)tgθ取何值時(shí),△AEF的面積最大?最大面積是多少?
(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(4,1)點(diǎn).
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對(duì)稱,點(diǎn)A、B分別為圓C1、C2上任意一點(diǎn),求|AB|的最小值;
(3)已知直線l上一點(diǎn)M在第一象限,兩質(zhì)點(diǎn)P、Q同時(shí)從原點(diǎn)出發(fā),點(diǎn)P以每秒1個(gè)單位的速度沿x軸正方向運(yùn)動(dòng),點(diǎn)Q以每秒個(gè)單位沿射線OM方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.問:當(dāng)t為何值時(shí)直線PQ與圓C1相切?
(本小題滿分12分)如圖,定點(diǎn)的坐標(biāo)分別為
,一質(zhì)點(diǎn)
從原點(diǎn)出發(fā),始終沿
軸的正方向運(yùn)動(dòng),已知第1分鐘內(nèi),質(zhì)點(diǎn)
運(yùn)動(dòng)了1個(gè)單位,之后每分鐘內(nèi)比上一分鐘內(nèi)多運(yùn)動(dòng)了2個(gè)單位,記第
分鐘內(nèi)質(zhì)點(diǎn)運(yùn)動(dòng)了
個(gè)單位,此時(shí)質(zhì)點(diǎn)的位置為
.
(Ⅰ)求、
的表達(dá)式;
(Ⅱ)當(dāng)為何值時(shí),
取得最大,最大值為多少?
一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。
1.答案:A
解:依題意可知:由
顯然:
但
不能推出
。
故選A ;
2.答案:D
解:依題意可知:設(shè)點(diǎn),則在點(diǎn)P處的切線的斜率為
,即
,又
故選D ;
3.答案:C
解:依題意可知:由是奇函數(shù),
故選C ;
4.答案:A
解:依題意可知:由
故選A;
5.答案:C
解:如圖:函數(shù)是周期函數(shù),T=1。
故選C;
6.答案:A
解:依題意可知:由,
,
又
。
故選A ;
7.答案:B
解:依題意可知:由圖可知:
。
8.答案:A
解:依題意可知:如圖,
,
則在中,
;
則在中,
;
則在中,
;
故選A ;
9.答案:D
解:依題意可知:因表示與
同方向的單位向量,
表示與
同方向的單位向量,故
,而
,
又(+
)
,說明
向量與
向量垂直,根據(jù)向量加法的平行四邊形法則可知:
向量所在直線 過
向量所在線段中點(diǎn),根據(jù)等腰三角形三線合一的性質(zhì),可逆推
為等腰三角形。又
與
夾角為
,故
為等邊三角形。
故選D ;
10.答案:A
解:設(shè),在
上,
,
,
,排除D;在
上,
,
,
,排除B與C;故選A。
11.答案:B
解法一:正方體的八個(gè)頂點(diǎn)可確定條直線;
條直線組成
對(duì)直線;正方體的八個(gè)頂點(diǎn)可確定
個(gè)面,其中12個(gè)四點(diǎn)面(6個(gè)表面,4個(gè)面對(duì)角面,2個(gè)體對(duì)角面),8個(gè)三點(diǎn)面;每個(gè)四點(diǎn)面上有
條直線,6條直線組成
對(duì)直線,12個(gè)四點(diǎn)面由12×15=180對(duì)直線組成;每個(gè)三點(diǎn)面上有
條直線,3條直線組成
對(duì)直線,8個(gè)三點(diǎn)面由8×3=24對(duì)直線組成;由正方體的八個(gè)頂點(diǎn)中的兩個(gè)所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為
;
解法二:正方體的八個(gè)頂點(diǎn)可確定個(gè)四面體,每個(gè)四面體中有三對(duì)異面直線,由正方體的八個(gè)頂點(diǎn)中的兩個(gè)所確定的所有直線中,取出兩條,這兩條直線是異面直線的概率為
;
12.答案:A
解:①正確;①中依題意可令,
當(dāng)時(shí),
在
上為減函數(shù),
又因在區(qū)間
為減函數(shù),故
;
②錯(cuò)誤;②中當(dāng)
當(dāng)
③錯(cuò)誤;③中當(dāng)時(shí),
④正確;
圓的對(duì)稱軸為直徑所在的直線,故原命題正確。
故答案為:A。
二、填空題:本大題共4小題,每小題4分,共16分,把答案填在橫線上。
13.答案:
解:設(shè)P點(diǎn)的坐標(biāo)為,則
直線PQ的方程為:
即
,
Q點(diǎn)的坐標(biāo)為
,R點(diǎn)的坐標(biāo)為
,
故答案為:;
14.答案:
解:依題意可知:正四棱錐S―ABCD的底面正方形ABCD在過球心O的大圓上,設(shè)球半徑為R,AC=2R=,
;
設(shè)球心O到側(cè)面SAB的距離為,連接
,
,過
作
于
,
連接SM,則,
,
又4
。
故答案為:;
15.答案:10
解:依題意可知:由令
,故
的系數(shù)為
。
故答案為:10 ;
16.答案:③
解:依題意可知:①錯(cuò),因在上,
為減函數(shù),而在
上,
為增函數(shù)。
②錯(cuò),因在上,
為增函數(shù),而在
上,
為減函數(shù)。
③正確。因在上,
為增函數(shù)。
④錯(cuò),因在上,
為增函數(shù),而在
上,
為減函數(shù),故
時(shí),函數(shù)
有極大值。
⑤錯(cuò),因在上,
為增函數(shù),故
時(shí),函數(shù)
沒有極大值。
故答案為:③;
三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明,證明過程或演算步驟。
(17)解:,設(shè)
中有
個(gè)元素,顯然有
,其中最大的一個(gè)是
,由于
是正整數(shù)集合,故
且
;
當(dāng)時(shí),
,此時(shí)不符合題意;
當(dāng)時(shí),
或
或
,顯然只有
符合題意;
當(dāng)時(shí),設(shè)
其中
,
此時(shí)令
,
若,則
,
不符合題意;
若,由于
是正整數(shù)集合,故
,
故
時(shí)不符合題意;
綜上所述。
(18)解:令
故當(dāng)
(19)。答:與平面
垂直的直線條數(shù)有1條為
;
證法一:依題意由圖可知:連,
連,
;
證法二:依題意由圖建立空間直角坐標(biāo)系:
,
設(shè)與垂直的法向量為
,則有:
,而
,故
。
(20)解:設(shè)S為勞動(dòng)村全體農(nóng)民的集合,為
季度勞動(dòng)村在外打工的農(nóng)民的集合,則
為
季度勞動(dòng)村沒有在外打工的農(nóng)民的集合,由題意有
所以
勞動(dòng)村的農(nóng)民全年在外打工為,則
,
但,
所以,
即
。
故勞動(dòng)村至少有的農(nóng)民全年在外打工。
(21)解:①作圖進(jìn)行受力分析,如下圖示;
由向量的平行四邊形法則,力的平衡及解直角三角形等知識(shí),得出:
② ∵,∴
故在
上為減函數(shù),
∴當(dāng)逐漸增大時(shí),
也逐漸增大。
③要最小,則
為最大,∴當(dāng)
為
時(shí),
最小,最小值是
。
④要,則
,∴當(dāng)
為
時(shí),
。
(22)解:(Ⅰ)C的焦點(diǎn)為F(1,0),直線l的斜率為1,所以l的方程為
將代入方程
,并整理得
設(shè)則有
所以夾角的大小為
(Ⅱ)由題設(shè) 得
|