日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2)設(shè)點(diǎn)P為橢圓上一動點(diǎn).且.求的取值范圍. 查看更多

           

          題目列表(包括答案和解析)

          橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的兩個(gè)焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓C上一點(diǎn),且滿足F1MF2=
          π
          3

          (1)求橢圓的離心率e的取值范圍;(2)設(shè)O為坐標(biāo)原點(diǎn),P是橢圓C上的一個(gè)動點(diǎn),試求t=
          |PF1-PF2|
          |OP|
          的取值范圍.

          查看答案和解析>>

          橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的兩個(gè)焦點(diǎn)F1(-c,0)、F2(c,0),M是橢圓C上一點(diǎn),且滿足F1MF2=
          π
          3

          (1)求橢圓的離心率e的取值范圍;(2)設(shè)O為坐標(biāo)原點(diǎn),P是橢圓C上的一個(gè)動點(diǎn),試求t=
          |PF1-PF2|
          |OP|
          的取值范圍.

          查看答案和解析>>

          精英家教網(wǎng)設(shè)橢圓C1
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的左、右焦點(diǎn)分別是F1、F2,下頂點(diǎn)為A,線段OA的中點(diǎn)為B(O為坐標(biāo)原點(diǎn)),如圖.若拋物線C2:y=x2-1與y軸的交點(diǎn)為B,且經(jīng)過F1,F(xiàn)2點(diǎn).
          (Ⅰ)求橢圓C1的方程;
          (Ⅱ)設(shè)M(0,-
          4
          5
          ),N為拋物線C2上的一動點(diǎn),過點(diǎn)N作拋物線C2的切線交橢圓C1于P、Q兩點(diǎn),求△MPQ面積的最大值.

          查看答案和解析>>

          若橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的離心率e為
          3
          5
          ,且橢圓C的一個(gè)焦點(diǎn)與拋物線y2=-12x的焦點(diǎn)重合.
          (1)求橢圓C的方程;
          (2)設(shè)點(diǎn)M(2,0),點(diǎn)Q是橢圓上一點(diǎn),當(dāng)|MQ|最小時(shí),試求點(diǎn)Q的坐標(biāo);
          (3)設(shè)P(m,0)為橢圓C長軸(含端點(diǎn))上的一個(gè)動點(diǎn),過P點(diǎn)斜率為k的直線l交橢圓與A,B兩點(diǎn),若|PA|2+|PB|2的值僅依賴于k而與m無關(guān),求k的值.

          查看答案和解析>>

          設(shè)橢圓的左、右頂點(diǎn)分別為,離心率.過該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長線上,且.

          (1)求橢圓的方程;

          (2)求動點(diǎn)C的軌跡E的方程;

          (3)設(shè)直線MN過橢圓的右焦點(diǎn)與橢圓相交于M、N兩點(diǎn),且 ,求直線MN的方程.

           

          查看答案和解析>>

           

          一.選擇題

          BADCC  ACCCC   AD

          二.填空題

          13.      14. 29     15.開閉區(qū)間均可)   16.  

          三、解答題

          17.解:

          (1)∵, ∴,

          ………3分

          .,  ∴………6分

          (2)由題知,得, ………8分

          得sinB=2cosB, ………10分

          ………12分

          18.解:

          (1)得分為60分,12道題必須全做對。在其余的5道題中,有兩道題答對的概率為,

          有一道題答對的概率為,還有兩道答對的概率為………2分

          所以得分為60分的概率為:P=………4分   

             (2)由可得 ………5分

          ,得2<x<15,則x=5或x=10,則相應(yīng)得分為55分或50分……7分

          得分為50分表示只做對了10道題,做錯2道題,所以概率為

          +

          += ………9分

          得分為55分表示只做對了11道題,做錯1道題,所以概率為:

          P2== ………11分

          則所求概率為+=。答:該考生得分的概率為 ………12分

          19.證明:

          (1)面A1B1C1∥面ABC,故B1C1∥BC,A1C1∥AC又BC⊥AC ,則B1C1⊥A1C1………2分

          又 面AB1C⊥面ABC,則BC⊥面AB1C,則BC⊥AB1B1C1⊥AB1  又∵B1C1∩A1C1=C1,

           B1C1∩AB1=B1,故B1C1為異面直線AB1與A1C1的公垂線………4分

          (2)由于BC⊥面AB1C   則面VBC⊥面AB1C,過A作AH⊥B1C于H,則AH⊥面VBC

           又AB1C 為等邊三角形且AC=,則AH=為A到平面VBC的距離………7分

          (3)過H作HG⊥VB于G,連AG則∠AGH為二面角A-VB-C的平面角

          在RtB1CB中 ………10分

          又RtB1HG∽RtB1BC  則,即

          故二面角A-VB-C的大小為………12分

          (本題也可用建立空間直角坐標(biāo)系然后用空間向量求解,評分標(biāo)準(zhǔn)參照執(zhí)行)

          20.解:

          (1)設(shè){an}的公差d,為{bn}的公比為q,則

          ………6分

          (2){Cn}的前n-1項(xiàng)中共有{an}中的1+2+3+…(n-1)=個(gè)項(xiàng)………8分

          且{an}的第項(xiàng)為………10分

          故Cn是首項(xiàng)為,公差為2,項(xiàng)數(shù)為n的等差數(shù)列的前n項(xiàng)和,

          ………12分

          21.解:

          (1)f(x)=x2+ax+b,由 f(3)=9+3a+b=0得b=-3a-9………2分

          (2)令f(x)= x2+ax-3a-9=(x-3)(x+a+3)=0得x=3或x=-a-3

          當(dāng)a=-6時(shí),f(x)=≥0,則f(x)無單調(diào)遞減區(qū)間………4分

          當(dāng)a>-6時(shí),令f(x) =(x-3)(x+a+3)≤0,得-a-3≤x≤3,

          則f(x)的單調(diào)遞減區(qū)間為[-a-3,3] ………6分

          當(dāng)a<-6時(shí),易得f(x)的單調(diào)遞減區(qū)間為[3,-a-3]

          綜上所述當(dāng)a=-6時(shí), f(x)無單調(diào)遞減區(qū)間;當(dāng)a>-6時(shí),f(x)的單調(diào)遞減區(qū)間為[-a-3,3],

           當(dāng)a<-6時(shí), f(x)的單調(diào)遞減區(qū)間為[3,-a-3] ………8分

          (3)由a>0知-a-3<-3,由(2)知f(x)在[-3,3]上是減函數(shù),又-3≤3cos≤3,-3≤3sin≤3,則要恒成立只要|f(-3)-f(3)|<72恒成立………10分

          又|f(-3)-f(3)|=18|a+2|<72,得-6<a<2,又a>0,則0<a<2………12分

          22.解:

          (1)由題意設(shè)橢圓方程為………1分

          ,橢圓方程為………4分

          (2)設(shè),

          ………7分

          ………9分

          =

          ………11分

          由于,

          因此的取值范圍為………14分

           

           


          同步練習(xí)冊答案