日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 依題設得解得tanAcotB=4 得tanA=4tanB.故A.B都是銳角.于是tanB>0 查看更多

           

          題目列表(包括答案和解析)

          若二次函數(shù)y=f(x)的圖象經(jīng)過原點,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范圍.

          分析:要求f(-2)的取值范圍,只需找到含人f(-2)的不等式(組).由于y=f(x)是二次函數(shù),所以應先將f(x)的表達形式寫出來.即可求得f(-2)的表達式,然后依題設條件列出含有f(-2)的不等式(組),即可求解.

          查看答案和解析>>

          選做題(不等式選講選做題)設函數(shù)f(x)=|x-4|+|x-1|,則f(x)的最小值是____________,若f(x)≤5,則x的取值范圍是____________.

          查看答案和解析>>

          某廠制造A種電子裝置45臺,B種電子裝置55臺,為了給每臺裝置裝配一個外殼,要從兩種不同規(guī)格的薄鋼板上截取.已知甲種薄鋼板每張面積為2m2,可做A種外殼3個和B種外殼5個;乙種薄鋼板每張面積為3m2,可做A種和B種外殼各6個,用這兩種薄鋼板各多少張,才能使總的用料面積最小?(請根據(jù)題意,在下面的橫線處按要求填上恰當?shù)年P系式或數(shù)值)
          解:設用甲、乙兩種薄鋼板各x張,y張,
          則可做A種外殼
          3x+6y
          3x+6y
          個,B種外殼
          5x+6y
          5x+6y
          個,所用鋼板的總面積為z=
          2x+3y
          2x+3y
          (m2)依題得線性約束條件為:
          3x+6y≥45
          5x+6y≥55
          x≥0
          y≥0
          ,(x,y∈N)
          3x+6y≥45
          5x+6y≥55
          x≥0
          y≥0
          ,(x,y∈N)
          作出線性約束條件對應的平面區(qū)域如圖(用陰影表示)依圖可知,目標函數(shù)取得最小值的點為
          (5,5)
          (5,5)
          ,且最小值zmin=
          25
          25
          (m2

          查看答案和解析>>

          已知函數(shù)的圖象過坐標原點O,且在點處的切線的斜率是.

          (Ⅰ)求實數(shù)的值; 

          (Ⅱ)求在區(qū)間上的最大值;

          (Ⅲ)對任意給定的正實數(shù),曲線上是否存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上?說明理由.

          【解析】第一問當時,,則。

          依題意得:,即    解得

          第二問當時,,令,結合導數(shù)和函數(shù)之間的關系得到單調性的判定,得到極值和最值

          第三問假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          (Ⅰ)當時,,則。

          依題意得:,即    解得

          (Ⅱ)由(Ⅰ)知,

          ①當時,,令

          變化時,的變化情況如下表:

          0

          0

          +

          0

          單調遞減

          極小值

          單調遞增

          極大值

          單調遞減

          ,,。∴上的最大值為2.

          ②當時, .當時, ,最大值為0;

          時, 上單調遞增!最大值為。

          綜上,當時,即時,在區(qū)間上的最大值為2;

          時,即時,在區(qū)間上的最大值為。

          (Ⅲ)假設曲線上存在兩點P、Q滿足題設要求,則點P、Q只能在軸兩側。

          不妨設,則,顯然

          是以O為直角頂點的直角三角形,∴

              (*)若方程(*)有解,存在滿足題設要求的兩點P、Q;

          若方程(*)無解,不存在滿足題設要求的兩點P、Q.

          ,則代入(*)式得:

          ,而此方程無解,因此。此時,

          代入(*)式得:    即   (**)

           ,則

          上單調遞增,  ∵     ∴,∴的取值范圍是

          ∴對于,方程(**)總有解,即方程(*)總有解。

          因此,對任意給定的正實數(shù),曲線上存在兩點P、Q,使得是以O為直角頂點的直角三角形,且此三角形斜邊中點在軸上

           

          查看答案和解析>>

          某廠制造A種電子裝置45臺,B種電子裝置55臺,為了給每臺裝置裝配一個外殼,要從兩種不同規(guī)格的薄鋼板上截。阎追N薄鋼板每張面積為2m2,可做A種外殼3個和B種外殼5個;乙種薄鋼板每張面積為3m2,可做A種和B種外殼各6個,用這兩種薄鋼板各多少張,才能使總的用料面積最?(請根據(jù)題意,在下面的橫線處按要求填上恰當?shù)年P系式或數(shù)值)
          解:設用甲、乙兩種薄鋼板各x張,y張,
          則可做A種外殼______個,B種外殼______個,所用鋼板的總面積為z=______(m2)依題得線性約束條件為:______

          查看答案和解析>>


          同步練習冊答案