日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .又直三棱柱中:底面 查看更多

           

          題目列表(包括答案和解析)

          三棱柱中,側棱與底面垂直,,分別是,的中點.

          (Ⅰ)求證:平面

          (Ⅱ)求證:平面;

          (Ⅲ)求三棱錐的體積.

          【解析】第一問利連結,∵M,N是AB,的中點∴MN//

          又∵平面,∴MN//平面      ----------4分

          ⑵中年∵三棱柱ABC-A1B1C1中,側棱與底面垂直,∴四邊形是正方形.∴.∴.連結,

          ,又N中的中點,∴

          相交于點C,∴MN平面.      --------------9分

          ⑶中由⑵知MN是三棱錐M-的高.在直角中,,

          ∴MN=.又.得到結論。

          ⑴連結,,∵M,N是AB,的中點∴MN//

          又∵平面,∴MN//平面   --------4分

          ⑵∵三棱柱ABC-A1B1C1中,側棱與底面垂直,

          ∴四邊形是正方形.∴

          .連結,

          ,又N中的中點,∴

          相交于點C,∴MN平面.      --------------9分

          ⑶由⑵知MN是三棱錐M-的高.在直角中,

          ∴MN=.又

           

          查看答案和解析>>

          如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.

          (Ⅰ)求證:點為棱的中點;

          (Ⅱ)判斷四棱錐的體積是否相等,并證明。

          【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,

          易知,。由此知:從而有又點的中點,所以,所以點為棱的中點.

          (2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。

          (1)過點點,取的中點,連。且相交于,面內的直線,!3分

          且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點的中點,所以,所以點為棱的中點.               …6分

          (2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

          ∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD

           

          查看答案和解析>>

          在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又頂點A1在底面ABC上的射影落在AC上,側棱AA1與底面ABC成60°角,D為AC的中點.
          (1)求證:BD⊥AA1
          (2)如果二面角A1-BD-C1為直二面角,試求側棱CC1與側面A1ABB1的距離.

          查看答案和解析>>

          如圖,三棱柱中,側棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中點。

          (I) 證明:平面⊥平面

          (Ⅱ)平面分此棱柱為兩部分,求這兩部分體積的比.

          【命題意圖】本題主要考查空間線線、線面、面面垂直的判定與性質及幾何體的體積計算,考查空間想象能力、邏輯推理能力,是簡單題.

          【解析】(Ⅰ)由題設知BC⊥,BC⊥AC,,∴,    又∵,∴,

          由題設知,∴=,即,

          又∵,   ∴⊥面,    ∵

          ∴面⊥面;

          (Ⅱ)設棱錐的體積為,=1,由題意得,==,

          由三棱柱的體積=1,

          =1:1,  ∴平面分此棱柱為兩部分體積之比為1:1

           

          查看答案和解析>>

          (2010•撫州模擬)在斜三棱柱ABC-A1B1C1中,AB=BC=2,∠ABC=120°,又頂點A1在底面ABC上的射影落在AC上,側棱AA1與底面ABC成60°角,D為AC的中點.
          (1)求證:BD⊥AA1;
          (2)如果二面角A1-BD-C1為直二面角,試求側棱CC1與側面A1ABB1的距離.

          查看答案和解析>>


          同步練習冊答案