日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解得. 所以CE=1時.A1C⊥平面BDE. 查看更多

           

          題目列表(包括答案和解析)

          已知曲線C:(m∈R)

          (1)   若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;

          (2)     設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。

          【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是

          (2)當(dāng)m=4時,曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為,

          ,得

          因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以

          設(shè)點(diǎn)M,N的坐標(biāo)分別為,則

          直線BM的方程為,點(diǎn)G的坐標(biāo)為

          因?yàn)橹本AN和直線AG的斜率分別為

          所以

          ,故A,G,N三點(diǎn)共線。

           

          查看答案和解析>>

           函數(shù)y=x2(x>0)的圖像在點(diǎn)(ak,ak2)處的切線與x軸交點(diǎn)的橫坐標(biāo)為ak+1,k為正整數(shù),a1=16,則a1+a3+a5=____▲_____

          在點(diǎn)(ak,ak2)處的切線方程為:當(dāng)時,解得,

          所以。

           

          查看答案和解析>>

          設(shè)橢圓的左、右頂點(diǎn)分別為,點(diǎn)在橢圓上且異于兩點(diǎn),為坐標(biāo)原點(diǎn).

          (Ⅰ)若直線的斜率之積為,求橢圓的離心率;

          (Ⅱ)若,證明直線的斜率 滿足

          【解析】(1)解:設(shè)點(diǎn)P的坐標(biāo)為.由題意,有  ①

          ,得

          ,可得,代入①并整理得

          由于,故.于是,所以橢圓的離心率

          (2)證明:(方法一)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由條件得消去并整理得  ②

          ,

          .

          整理得.而,于是,代入②,

          整理得

          ,故,因此.

          所以.

          (方法二)

          依題意,直線OP的方程為,設(shè)點(diǎn)P的坐標(biāo)為.

          由P在橢圓上,有

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118494193384555_ST.files/image036.png">,,所以,即   ③

          ,,得整理得.

          于是,代入③,

          整理得

          解得,

          所以.

           

          查看答案和解析>>

          如圖,已知點(diǎn)和單位圓上半部分上的動點(diǎn)B.

          (1)若,求向量

          (2)求的最大值.

          【解析】對于這樣的向量的坐標(biāo)和模最值的求解,利用建立直角坐標(biāo)系的方法可知。

          第一問中,依題意,,,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911085823385992/SYS201207091109409213861961_ST.files/image002.png">,所以,即,

          解得,所以

          第二問中,結(jié)合三角函數(shù)的性質(zhì)得到最值。

          (1)依題意,,(不含1個或2個端點(diǎn)也對)

          , (寫出1個即可)

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911085823385992/SYS201207091109409213861961_ST.files/image002.png">,所以,即

          解得,所以.-

          (2)

           當(dāng)時,取得最大值,

           

          查看答案和解析>>

          已知函數(shù)y=x²-3x+c的圖像與x恰有兩個公共點(diǎn),則c=

          (A)-2或2 (B)-9或3 (C)-1或1 (D)-3或1

          【解析】若函數(shù)的圖象與軸恰有兩個公共點(diǎn),則說明函數(shù)的兩個極值中有一個為0,函數(shù)的導(dǎo)數(shù)為,令,解得,可知當(dāng)極大值為,極小值為.由,解得,由,解得,所以,選A.

           

          查看答案和解析>>


          同步練習(xí)冊答案