日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 同理可得在和上單調(diào)遞增.綜合以上得(略). --------------------------6分 查看更多

           

          題目列表(包括答案和解析)

          如圖,,…,,…是曲線上的點(diǎn),,,…,,…是軸正半軸上的點(diǎn),且,,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標(biāo)原點(diǎn)).

          (1)寫出之間的等量關(guān)系,以及、之間的等量關(guān)系;

          (2)求證:);

          (3)設(shè),對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.

          【解析】第一問(wèn)利用有,得到

          第二問(wèn)證明:①當(dāng)時(shí),可求得,命題成立;②假設(shè)當(dāng)時(shí),命題成立,即有則當(dāng)時(shí),由歸納假設(shè)及,

          第三問(wèn) 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

          解:(1)依題意,有,,………………4分

          (2)證明:①當(dāng)時(shí),可求得,命題成立; ……………2分

          ②假設(shè)當(dāng)時(shí),命題成立,即有,……………………1分

          則當(dāng)時(shí),由歸納假設(shè)及,

          解得不合題意,舍去)

          即當(dāng)時(shí),命題成立.  …………………………………………4分

          綜上所述,對(duì)所有,.    ……………………………1分

          (3) 

          .………………………2分

          因?yàn)楹瘮?shù)在區(qū)間上單調(diào)遞增,所以當(dāng)時(shí),最大為,即

          .……………2分

          由題意,有. 所以,

           

          查看答案和解析>>

          已知函數(shù).(

          (1)若在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍;

          (2)若在區(qū)間上,函數(shù)的圖象恒在曲線下方,求的取值范圍.

          【解析】第一問(wèn)中,首先利用在區(qū)間上單調(diào)遞增,則在區(qū)間上恒成立,然后分離參數(shù)法得到,進(jìn)而得到范圍;第二問(wèn)中,在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.然后求解得到。

          解:(1)在區(qū)間上單調(diào)遞增,

          在區(qū)間上恒成立.  …………3分

          ,而當(dāng)時(shí),,故. …………5分

          所以.                 …………6分

          (2)令,定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061918574873515193/SYS201206191859562664899842_ST.files/image016.png">.

          在區(qū)間上,函數(shù)的圖象恒在曲線下方等價(jià)于在區(qū)間上恒成立.   

                  …………9分

          ① 若,令,得極值點(diǎn),,

          當(dāng),即時(shí),在(,+∞)上有,此時(shí)在區(qū)間上是增函數(shù),并且在該區(qū)間上有,不合題意;

          當(dāng),即時(shí),同理可知,在區(qū)間上遞增,

          ,也不合題意;                     …………11分

          ② 若,則有,此時(shí)在區(qū)間上恒有,從而在區(qū)間上是減函數(shù);

          要使在此區(qū)間上恒成立,只須滿足,

          由此求得的范圍是.        …………13分

          綜合①②可知,當(dāng)時(shí),函數(shù)的圖象恒在直線下方.

           

          查看答案和解析>>

          .函數(shù)f(x)=
          x2-x4
          |x-2|-2
          .給出函數(shù)f(x)下列性質(zhì):(1)f(x)的定義域和值域均為[-1,1];(2)f(x)是奇函數(shù);(3)函數(shù)在定義域上單調(diào)遞增;(4)函數(shù)f(x)有兩零點(diǎn);(5)A、B為函數(shù)f(x)圖象上任意不同兩點(diǎn),則
          2
          <|AB|≤2
          .則函數(shù)f(x)有關(guān)性質(zhì)中正確描述的個(gè)數(shù)是( 。

          查看答案和解析>>

          函數(shù)f(x)=
          x2-x4
          |x-2|-2
          .給出函數(shù)f(x)下列性質(zhì):(1)函數(shù)的定義域和值域均為[-1,1];(2)函數(shù)的圖象關(guān)于原點(diǎn)成中心對(duì)稱;(3)函數(shù)在定義域上單調(diào)遞增;(4)Af(x)dx=0(其中A為函數(shù)的定義域);(5)A、B為函數(shù)f(x)圖象上任意不同兩點(diǎn),則
          2
          <|AB|≤2
          .請(qǐng)寫出所有關(guān)于函數(shù)f(x)性質(zhì)正確描述的序號(hào)
          (2)(4)
          (2)(4)

          查看答案和解析>>

          定義在R上的連續(xù)可導(dǎo)函數(shù)y=f(x),其導(dǎo)函數(shù)為y=f'(x),下列條件是“f(x)在R上單調(diào)遞增”的充分不必要條件的是( 。

          查看答案和解析>>


          同步練習(xí)冊(cè)答案