日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù) 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù)f(x)=4sin(2x-
          π
          3
          )+1
          ,給定條件p:
          π
          4
          ≤x≤
          π
          2
          ,條件q:-2<f(x)-m<2,若p是q的充分條件,則實(shí)數(shù)m的取值范圍為
           

          查看答案和解析>>

          已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的不恒為零的偶函數(shù),且對任意實(shí)數(shù)x都有xf(x+1)=(1+x)f(x),則f(f(
          52
          ))的值是
           

          查看答案和解析>>

          已知函數(shù)g(x)=ax2-2ax+1+b(a≠0,b<1),在區(qū)間[2,3]上有最大值4,最小值1,設(shè)f(x)=
          g(x)
          x

          (Ⅰ)求a,b的值;
          (Ⅱ)不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的范圍;
          (Ⅲ)方程f(|2x-1|)+k(
          2
          |2x-1|
          -3)=0
          有三個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)k的范圍.

          查看答案和解析>>

          8、已知函數(shù)y=f(x)(x∈R)滿足f(x+1)=f(x-1),且x∈[-1,1]時(shí),f(x)=x2,則函數(shù)y=f(x)與y=log5x的圖象的交點(diǎn)個(gè)數(shù)為( 。

          查看答案和解析>>

          已知函數(shù)f(x)=
          3-x,x>0
          x2-1.x≤0
          ,則f[f(-2)]=
           

          查看答案和解析>>

          一、選擇題:

          1―5  ACBBD    6―10  BCDAC

          二、填空題:

          11.60    12.       13.―     14.

          15.2    16.    17.

          三、解答題:

          18.解:(I)

          20090506

             (II)由于區(qū)間的長度是為,為半個(gè)周期。

              又分別取到函數(shù)的最小值

          所以函數(shù)上的值域?yàn)?sub>!14分

          19.解:(1)該同學(xué)投中于球但未通過考核,即投藍(lán)四次,投中二次,且這兩次不連續(xù),其概率為                                 …………5分

             (2)在這次考核中,每位同學(xué)通過考核的概率為

                ………………10分

              隨機(jī)變量X服從其數(shù)學(xué)期望

            …………14分

          20.解:(1)設(shè)FD的中點(diǎn)為G,則TG//BD,而BD//CE,

                •     當(dāng)a=5時(shí),AF=5,BD=1,得TG=3。

                      又CE=3,TG=CE。

                      *四邊形TGEC是平行四邊形。      

                  *CT//EG,TC//平面DEF,………………4分

                     (2)以T為原點(diǎn),以射線TB,TC,TG分別為x,y,z軸,

                  建立空間直角坐標(biāo)系,則D(1,0,1),

                                ………………6分

                  <legend id="o5kww"></legend>
                  <style id="o5kww"><abbr id="o5kww"></abbr></style>

                  <strong id="o5kww"><u id="o5kww"></u></strong>
                • <sub id="o5kww"></sub>

                      則平面DEF的法向量n=(x,y,z)滿足:

                    1.  

                          解之可得又平面ABC的法向量

                      m=(0,0,1)

                         

                         即平面DEF與平面ABC相交所成且為銳角的二面角的余弦值為  ……9分

                         (3)由P在DE上,可設(shè),……10分

                          則

                                         ………………11分

                          若CP⊥平面DEF,則

                          即

                       

                       

                          解之得:                ……………………13分

                          即當(dāng)a=2時(shí),在DE上存在點(diǎn)P,滿足DP=3PE,使CP⊥平面DEF!14分

                      21.解:(1)因?yàn)?sub>        所以

                          橢圓方程為:                          ………………4分

                         (2)由(1)得F(1,0),所以。假設(shè)存在滿足題意的直線l,設(shè)l的方程為

                         

                          代入       ………………6分

                          設(shè)   ①

                                        ……………………8分

                          設(shè)AB的中點(diǎn)為M,則

                          。

                           ……………………11分

                          ,即存在這樣的直線l

                          當(dāng)時(shí), k不存在,即不存在這樣的直線l;……………………14分

                       

                       

                       

                       

                      22.解:(I) ……………………2分

                          令(舍去)

                          單調(diào)遞增;

                          當(dāng)單調(diào)遞減。    ……………………4分

                          為函數(shù)在[0,1]上的極大值。        ……………………5分

                         (II)由

                       ①        ………………………7分

                      設(shè)

                      依題意知上恒成立。

                      都在上單調(diào)遞增,要使不等式①成立,

                      當(dāng)且僅當(dāng)…………………………11分

                         (III)由

                      ,則

                      當(dāng)上遞增;

                      當(dāng)上遞減;

                              …………………………16分