日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3)易知上為增函數(shù). 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù),其中.

            (1)若處取得極值,求曲線在點處的切線方程;

            (2)討論函數(shù)的單調(diào)性;

            (3)若函數(shù)上的最小值為2,求的取值范圍.

          【解析】第一問,處取得極值

          所以,,解得,此時,可得求曲線在點

          處的切線方程為:

          第二問中,易得的分母大于零,

          ①當時, ,函數(shù)上單調(diào)遞增;

          ②當時,由可得,由解得

          第三問,當時由(2)可知,上處取得最小值,

          時由(2)可知處取得最小值,不符合題意.

          綜上,函數(shù)上的最小值為2時,求的取值范圍是

           

          查看答案和解析>>

          已知

          (1)求函數(shù)上的最小值

          (2)對一切的恒成立,求實數(shù)a的取值范圍

          (3)證明對一切,都有成立

          【解析】第一問中利用

          時,單調(diào)遞減,在單調(diào)遞增,當,即時,,

          第二問中,,則設(shè),

          ,單調(diào)遞增,,單調(diào)遞減,,因為對一切恒成立, 

          第三問中問題等價于證明,,

          由(1)可知,的最小值為,當且僅當x=時取得

          設(shè),,則,易得。當且僅當x=1時取得.從而對一切,都有成立

          解:(1)時,單調(diào)遞減,在單調(diào)遞增,當,即時,

                           …………4分

          (2),則設(shè),

          ,單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

          (3)問題等價于證明,

          由(1)可知,的最小值為,當且僅當x=時取得

          設(shè),則,易得。當且僅當x=1時取得.從而對一切,都有成立

           

          查看答案和解析>>


          同步練習(xí)冊答案