日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知拋物線C: .A .B為拋物線上兩點(diǎn).若過A .B的兩條切線相互垂直. (Ⅰ)求AB中點(diǎn)軌跡E的方程; 查看更多

           

          題目列表(包括答案和解析)

          已知拋物線C:x2=2my(m>0)和直線l:y=kx-m沒有公共點(diǎn)(其中k、m為常數(shù)),動(dòng)點(diǎn)P是直線l上的任意一點(diǎn),過P點(diǎn)引拋物線C的兩條切線,切點(diǎn)分別為M、N,且直線MN恒過點(diǎn)Q(k,1).
          (1)求拋物線C的方程;
          (2)已知O點(diǎn)為原點(diǎn),連接PQ交拋物線C于A、B兩點(diǎn),證明:S△OAP•S△OBQ=S△OAQ•S△OBP

          查看答案和解析>>

          已知拋物線C:y2=4x,過點(diǎn)A(x0,0)(其中x0為常數(shù),且x0>0)作直線l交拋物線于P,Q(點(diǎn)P在第一象限);
          (1)設(shè)點(diǎn)Q關(guān)于x軸的對稱點(diǎn)為D,直線DP交x軸于點(diǎn)B,求證:B為定點(diǎn);
          (2)若x0=1,M1,M2,M3為拋物線C上的三點(diǎn),且△M1M2M3的重心為A,求線段M2M3所在直線的斜率的取值范圍.

          查看答案和解析>>

          已知拋物線C:x2=2my(m>0)和直線l:y=x-m沒有公共點(diǎn)(其中m為常數(shù)).動(dòng)點(diǎn)P是直線l上的任意一點(diǎn),過P點(diǎn)引拋物線C的兩條切線,切點(diǎn)分別為M、N,且直線MN恒過點(diǎn)Q(1,1).
          (1)求拋物線C的方程;
          (2)已知O點(diǎn)為原點(diǎn),連接PQ交拋物線C于A、B兩點(diǎn),求
          |PA|
          |
          PB|
          -
          |
          QA|
          |
          QB|
          的值.

          查看答案和解析>>

          已知拋物線C:y2=8x,O為坐標(biāo)原點(diǎn),動(dòng)直線l:y=k(x+2)與拋物線C交于不同兩點(diǎn)A,B
          (1)求證:
          OA
          OB
          為常數(shù);
          (2)求滿足
          OM
          =
          OA
          +
          OB
          的點(diǎn)M的軌跡方程.

          查看答案和解析>>

          已知拋物線C:x2=2my(m>0)和直線l:y=x-m沒有公共點(diǎn)(其中m為常數(shù)).動(dòng)點(diǎn)P是直線l上的任意一點(diǎn),過P點(diǎn)引拋物線C的兩條切線,切點(diǎn)分別為M、N,且直線MN恒過點(diǎn)Q(1,1).
          (1)求拋物線C的方程;
          (2)已知O點(diǎn)為原點(diǎn),連接PQ交拋物線C于A、B兩點(diǎn),求數(shù)學(xué)公式的值.

          查看答案和解析>>

          一. 每小題5分,共60分      DACDB  DACBB   DD

          二. 每小題5分,共20分.其中第16題前空2分,后空3分.

          13.  60;     14.  ;     15. ;    16.   2,-

          三.解答題:本大題共6個(gè)小題,共70分.解答應(yīng)寫出文字說明,證明過程或演算步驟.

          17.(Ⅰ) 

              

          (Ⅱ)                (7分)

                 (8分)

                                (10分)

          18.解:(Ⅰ)記“該人被錄用”的事件為事件A,其對立事件為,則

          (Ⅱ)該生參加測試次數(shù)ξ的可能取值為2,3,4,依題意得

          (10分)

          (8分)

          (6分)

           

           

          分布列為 

          2

          3

          4

          p

          1/9

          4/9

          4/9

          ……………………………….11分

           

           

           

          ……………..12分       

          19. 解:(Ⅰ)依題意 ,,故…1分,     

          當(dāng)時(shí), ① 又

          ②?①整理得:,故為等比數(shù)列…………………3分

          …………4分∴…………………………….5分

          ,即是等差數(shù)列………………….6分

          (Ⅱ)由(Ⅰ)知,

          …8分.

                …………9分,依題意有,解得…11分

          故所求最大正整數(shù)的值為……………………………………………12分

          20.

           

           

           

           

           

           

           

           

           

           

          解法一圖

          解法二圖

           

           

          解法一:(1)證明:

          ………………………….5分

          (8分)

           解法二:以C為坐標(biāo)原點(diǎn),射線CA為x軸的正半軸,建立如圖所示的空間直角坐        標(biāo)系C-xyz.依題意有C ,

                                (3分)

          (Ⅰ)

          <td id="mhsas"></td>
          <small id="mhsas"></small>
            <small id="mhsas"></small>

            <small id="mhsas"></small>

              (5分)

              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>
            1. <sub id="o5kww"></sub>

              (12分)

              設(shè)

              變化情況如下表:

               

              (0,1)

              1

              (1,+∞)

              0

              +

              遞減

              0

              遞增

              處有一個(gè)最小值0,即當(dāng)時(shí),>0,∴=0只有一個(gè)解.即當(dāng)時(shí),方程有唯一解………………………6分.

                1. (12分)

                  (1分) 依題意又由過兩點(diǎn)A,B的切線相互垂直得

                  從而

                  即所求曲線E的方程為 y=……………………………………4分

                    (Ⅱ)由(Ⅰ)得曲線F方程為,令=0,得曲線F與軸交點(diǎn)是(0,b);令,由題意b≠-1 且Δ>0,解得b<3 且b≠-1.           ………………………………………….6分

                  (?)方法一:設(shè)所求圓的一般方程為=0 得這與=0 是同一個(gè)方程,故D=4,.………………….8分.

                  =0 得,此方程有一個(gè)根為b+1,代入得出E=?b?1.

                  所以圓C 的方程…………………9分

                  方法二:①+②得

                  (?)方法一:圓C 必過定點(diǎn)(0,1)和(-4,1).………………………11分

                  證明如下:將(0,1)代入圓C 的方程,得左邊=0+1+2×0-(b+1)+b=0,右邊=0,

                  所以圓C 必過定點(diǎn)(0,1).同理可證圓C 必過定點(diǎn)(-4,1).…………………12分

                    方法二:由 圓C 的方程得………………11分

                  12分