日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求證:.M.C.N四點共面, 查看更多

           

          題目列表(包括答案和解析)

          (選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟.
          A.選修4-1:幾何證明選講
          如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
          N點的切線交CA的延長線于P.
          (1)求證:PM2=PA•PC;
          (2)若⊙O的半徑為2
          3
          ,OA=
          3
          OM,求MN的長.
          B.選修4-2:矩陣與變換
          曲線x2+4xy+2y2=1在二階矩陣M=
          .
          1a
          b1
          .
          的作用下變換為曲線x2-2y2=1,求實數(shù)a,b的值;
          C.選修4-4:坐標系與參數(shù)方程
          在極坐標系中,圓C的極坐標方程為ρ=
          2
          cos(θ+
          π
          4
          )
          ,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
          x=1+
          4
          5
          y=-1-
          3
          5
          (t為參數(shù)),求直線l被圓C所截得的弦長.
          D.選修4-5:不等式選講
          設a,b,c均為正實數(shù).
          (1)若a+b+c=1,求a2+b2+c2的最小值;
          (2)求證:
          1
          2a
          +
          1
          2b
          +
          1
          2c
          1
          b+c
          +
          1
          c+a
          +
          1
          a+b

          查看答案和解析>>

          如圖,長方體ABCD-A1B1C1D1中,AB=AA1=a,MAD中點,N是B1C1中點.

          (1)求證:A1M、CN四點共面;

          (2)求證:BD1⊥MCBA1;

          (3)求證:平面A1MCN⊥平面A1BD1;

          (4)求A1B與平面A1MCN所成的角.

          查看答案和解析>>

          (08年濰坊市二模)(12分)如圖,長方體中,,,MAD中點,N中點.

           

           。1)求證:、M、C、N四點共面;

           。2)求證:;

           。3)求證:平面⊥平面;

           。4)求與平面所成的角.

           

          查看答案和解析>>

          精英家教網(wǎng)如圖某一幾何體的展開圖,其中ABCD是邊長為6的正方形,SD=PD=6,CR=SC,AQ=AP,BQ=BR,點S、D、A、Q共線及P、D、C、R共線.
          (Ⅰ)沿圖中虛線將它們折疊起來,使P、Q、R、S四點重合為點P,請畫出其直觀圖;并求四棱錐P-ABCD的體積;
          (Ⅱ)若M是AD的中點,N是PB的中點,求證:MN⊥面PBC.

          查看答案和解析>>

          如圖某一幾何體的展開圖,其中ABCD是邊長為6的正方形,SD=PD=6,CR=SC,AQ=AP,BQ=BR,點S、D、A、Q共線及P、D、C、R共線.
          (Ⅰ)沿圖中虛線將它們折疊起來,使P、Q、R、S四點重合為點P,請畫出其直觀圖;并求四棱錐P-ABCD的體積;
          (Ⅱ)若M是AD的中點,N是PB的中點,求證:MN⊥面PBC.

          查看答案和解析>>

          1.A 2.B 3.B 4.D 5.(理)C (文)A 6.B 7.A 8.B 9.A 

          10.B 11.(理)A (文)C 12.B 13.(理)。ㄎ模25,60,15 

          14.-672 15.2.5小時 16.①,④

            17.解析:設fx)的二次項系數(shù)為m,其圖象上兩點為(1-x,)、B(1+x,)因為,,所以,由x的任意性得fx)的圖象關于直線x=1對稱,若m>0,則x≥1時,fx)是增函數(shù),若m<0,則x≥1時,fx)是減函數(shù).

            ∵ ,,,,

          ,

            ∴ 當時,

          ,

            ∵ , ∴ 

            當時,同理可得

            綜上:的解集是當時,為;

            當時,為,或

            18.解析:(理)(1)設甲隊在第五場比賽后獲得冠軍為事件M,則第五場比賽甲隊獲勝,前四場比賽甲隊獲勝三場

            依題意得

            (2)設甲隊獲得冠軍為事件E,則E包含第四、第五、第六、第七場獲得冠軍四種情況,且它們被彼此互斥.

            ∴ 

           。ㄎ模┰O甲袋內恰好有4個白球為事件B,則B包含三種情況.

           、偌状腥2個白球,且乙袋中取2個白球,②甲袋中取1個白球,1個黑球,且乙袋中取1個白球,1個黑球,③甲、乙兩袋中各取2個黑球.

            ∴ 

            19.解析:(甲)(1)建立如圖坐標系:O為△ABC的重心,直線OPz軸,ADy軸,x軸平行于CB

            得A(0,,0)、B(1,,0)、D(0,,0)、E(0,,).

           。2),,,,,

            設ADBE所成的角為,則

           ∴ 

           。ㄒ遥1)取中點E,連結ME、

            ∴ ,MCEC. ∴ MC. ∴ ,M,CN四點共面.

           。2)連結BD,則BD在平面ABCD內的射影.

            ∵ , ∴ Rt△CDM~Rt△BCD,∠DCM=∠CBD

            ∴ ∠CBD+∠BCM=90°.  ∴ MCBD.  ∴ 

           。3)連結,由是正方形,知

            ∵ MC, ∴ ⊥平面

            ∴ 平面⊥平面

           。4)∠與平面所成的角且等于45°.

            20.解析:(1)

            ∵ x≥1. ∴ 

            當x≥1時,是增函數(shù),其最小值為

            ∴ a<0(a=0時也符合題意). ∴ a≤0.

           。2),即27-6a-3=0, ∴ a=4.

            ∴ 有極大值點,極小值點

            此時fx)在,上時減函數(shù),在,+上是增函數(shù).

            ∴ fx)在,上的最小值是,最大值是,(因).

            21.解析:(1)∵ 斜率k存在,不妨設k>0,求出M,2).直線MA方程為,直線MB方程為

            分別與橢圓方程聯(lián)立,可解出

            ∴ . ∴ (定值).

           。2)設直線AB方程為,與聯(lián)立,消去y

            由D>0得-4<m<4,且m≠0,點MAB的距離為

            設△AMB的面積為S. ∴ 

            當時,得

            22.解析:(1)∵ ,a,

            ∴   ∴   ∴ 

            ∴ 

            ∴ a=2或a=3(a=3時不合題意,舍去). ∴a=2.

           。2),由可得

            . ∴ 

            ∴ b=5

           。3)由(2)知,, ∴ 

            ∴ . ∴ ,

            ∵ ,

            當n≥3時,

            

               

            

            

            ∴ . 綜上得 

           

           


          同步練習冊答案