日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 所以.命題得證.-------13分 查看更多

           

          題目列表(包括答案和解析)

          ((本小題共13分)

          若數(shù)列滿足,數(shù)列數(shù)列,記=.

          (Ⅰ)寫出一個滿足,且〉0的數(shù)列;

          (Ⅱ)若,n=2000,證明:E數(shù)列是遞增數(shù)列的充要條件是=2011;

          (Ⅲ)對任意給定的整數(shù)n(n≥2),是否存在首項為0的E數(shù)列,使得=0?如果存在,寫出一個滿足條件的E數(shù)列;如果不存在,說明理由。

          【解析】:(Ⅰ)0,1,2,1,0是一具滿足條件的E數(shù)列A5。

          (答案不唯一,0,1,0,1,0也是一個滿足條件的E的數(shù)列A5

          (Ⅱ)必要性:因為E數(shù)列A5是遞增數(shù)列,所以.所以A5是首項為12,公差為1的等差數(shù)列.所以a2000=12+(2000—1)×1=2011.充分性,由于a2000—a10001,a2000—a10001……a2—a11所以a2000—a19999,即a2000a1+1999.又因為a1=12,a2000=2011,所以a2000=a1+1999.故是遞增數(shù)列.綜上,結(jié)論得證。

           

           

          查看答案和解析>>

          已知數(shù)列的前項和為,且 (N*),其中

          (Ⅰ) 求的通項公式;

          (Ⅱ) 設 (N*).

          ①證明: ;

          ② 求證:.

          【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于

          所以利用放縮法,從此得到結(jié)論。

          解:(Ⅰ)當時,由.  ……2分

          若存在,

          從而有,與矛盾,所以.

          從而由.  ……6分

           (Ⅱ)①證明:

          證法一:∵

           

          .…………10分

          證法二:,下同證法一.           ……10分

          證法三:(利用對偶式)設,,

          .又,也即,所以,也即,又因為,所以.即

                              ………10分

          證法四:(數(shù)學歸納法)①當時, ,命題成立;

             ②假設時,命題成立,即,

             則當時,

              即

          故當時,命題成立.

          綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

          ②由于,

          所以,

          從而.

          也即

           

          查看答案和解析>>

          在四棱錐中,平面,底面為矩形,.

          (Ⅰ)當時,求證:;

          (Ⅱ)若邊上有且只有一個點,使得,求此時二面角的余弦值.

          【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當a=1時,底面ABCD為正方形,

          又因為,………………2分

          ,得證。

          第二問,建立空間直角坐標系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

          設BQ=m,則Q(1,m,0)(0《m《a》

          要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得

          由此知道a=2,  設平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

          解:(Ⅰ)當時,底面ABCD為正方形,

          又因為,………………3分

          (Ⅱ) 因為AB,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標系,如圖所示,

          則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

          設BQ=m,則Q(1,m,0)(0《m《a》要使,只要

          所以,即………6分

          由此可知時,存在點Q使得

          當且僅當m=a-m,即m=a/2時,BC邊上有且只有一個點Q,使得由此知道a=2,

          設平面POQ的法向量為

          ,所以    平面PAD的法向量

          的大小與二面角A-PD-Q的大小相等所以

          因此二面角A-PD-Q的余弦值為

           

          查看答案和解析>>

          如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點,且平面平面.

          (Ⅰ)求證:點為棱的中點;

          (Ⅱ)判斷四棱錐的體積是否相等,并證明。

          【解析】本試題主要考查了立體幾何中的體積問題的運用。第一問中,

          易知,。由此知:從而有又點的中點,所以,所以點為棱的中點.

          (2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點,可以得證。

          (1)過點點,取的中點,連。且相交于,面內(nèi)的直線,。……3分

          且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點的中點,所以,所以點為棱的中點.               …6分

          (2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

          ∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點,∴VA1-B1C1CD=VC-A1ABD

           

          查看答案和解析>>

          某校從參加高三年級理科綜合物理考試的學生中隨機抽出名學生,將其數(shù)學成績(均為整數(shù))分成六段,后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

          (Ⅰ)求分數(shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;

          (Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的

          平均分;

          (Ⅲ)若從名學生中隨機抽取人,抽到的學生成績在分,在分,

          分,用表示抽取結(jié)束后的總記分,求的分布列和數(shù)學期望.

          【解析】(1)中利用直方圖中面積和為1,可以求解得到分數(shù)在內(nèi)的頻率為

          (2)中結(jié)合平均值可以得到平均分為:

          (3)中用表示抽取結(jié)束后的總記分x, 學生成績在的有人,在的有人,在的有人,結(jié)合古典概型的概率公式求解得到。

          (Ⅰ)設分數(shù)在內(nèi)的頻率為,根據(jù)頻率分布直方圖,則有,可得,所以頻率分布直方圖如右圖.……4分

          (求解頻率3分,畫圖1分)

          (Ⅱ)平均分為:……7分

          (Ⅲ)學生成績在的有人,在的有人,

          的有人.并且的可能取值是.    ………8分

          ;;

          .(每個1分)

          所以的分布列為

          0

          1

          2

          3

          4

          …………………13分

           

          查看答案和解析>>


          同步練習冊答案