日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 當(dāng)時.在上單調(diào)遞減. 查看更多

           

          題目列表(包括答案和解析)

          已知

          (1)求函數(shù)上的最小值

          (2)對一切的恒成立,求實數(shù)a的取值范圍

          (3)證明對一切,都有成立

          【解析】第一問中利用

          當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

          第二問中,,則設(shè),

          單調(diào)遞增,,單調(diào)遞減,,因為對一切,恒成立, 

          第三問中問題等價于證明,,

          由(1)可知,的最小值為,當(dāng)且僅當(dāng)x=時取得

          設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

          解:(1)當(dāng)時,單調(diào)遞減,在單調(diào)遞增,當(dāng),即時,,

                           …………4分

          (2),則設(shè),

          ,單調(diào)遞增,,,單調(diào)遞減,,因為對一切,恒成立,                                             …………9分

          (3)問題等價于證明,,

          由(1)可知的最小值為,當(dāng)且僅當(dāng)x=時取得

          設(shè),,則,易得。當(dāng)且僅當(dāng)x=1時取得.從而對一切,都有成立

           

          查看答案和解析>>

          已知函數(shù),的導(dǎo)函數(shù)。  (1)求函數(shù)的單調(diào)遞減區(qū)間;
          (2)若對一切的實數(shù),有成立,求的取值范圍; 
          (3)當(dāng)時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標(biāo)的最大值;若不存在,請說明理由.

          查看答案和解析>>

          已知函數(shù),的導(dǎo)函數(shù)。  (1)求函數(shù)的單調(diào)遞減區(qū)間;
          (2)若對一切的實數(shù),有成立,求的取值范圍; 
          (3)當(dāng)時,在曲線上是否存在兩點,使得曲線在 兩點處的切線均與直線交于同一點?若存在,求出交點縱坐標(biāo)的最大值;若不存在,請說明理由.

          查看答案和解析>>

          已知函數(shù)f(x)=(x2-ax)e-x(a∈R)。
          (1)當(dāng)a=2時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
          (2)若函數(shù)f(x)在(-1,1)上單調(diào)遞減,求a的取值范圍;
          (3)函數(shù)f(x)可否為R上的單調(diào)函數(shù),若是,求出a的取值范圍,若不是,請說明理由.

          查看答案和解析>>

          (本小題滿分12分)已知函數(shù)

          (I)若函數(shù)在區(qū)間上存在極值,求實數(shù)a的取值范圍;

          (II)當(dāng)時,不等式恒成立,求實數(shù)k的取值范圍.

          (Ⅲ)求證:解:(1),其定義域為,則

          ,

          當(dāng)時,;當(dāng)時,

          在(0,1)上單調(diào)遞增,在上單調(diào)遞減,

          即當(dāng)時,函數(shù)取得極大值.                                       (3分)

          函數(shù)在區(qū)間上存在極值,

           ,解得                                            (4分)

          (2)不等式,即

          (6分)

          ,則

          ,即上單調(diào)遞增,                          (7分)

          ,從而,故上單調(diào)遞增,       (7分)

                    (8分)

          (3)由(2)知,當(dāng)時,恒成立,即,

          ,則,                               (9分)

                                                                                 (10分)

          以上各式相加得,

          ,

                                     

                                                  (12分)

          。

           

          查看答案和解析>>


          同步練習(xí)冊答案