日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 21.如圖.設(shè)F是橢圓的左焦點(diǎn).直線l為其左準(zhǔn)線.直線l與x軸交于點(diǎn)P.線段MN為橢圓的長(zhǎng)軸.已知 查看更多

           

          題目列表(包括答案和解析)

          (本小題滿分13分)

          如圖,在以點(diǎn)O為圓心,|AB|=4為直徑的半圓ADB中,ODAB,P是半圓弧上一點(diǎn),

          POB=30°,曲線C是滿足||MA|-|MB||為定值的動(dòng)點(diǎn)M的軌跡,且曲線C過(guò)點(diǎn)P

          (Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;

          (Ⅱ)設(shè)過(guò)點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)E、F。若△OEF的面積不小于2,求直線l斜率的取值范圍。

          查看答案和解析>>

          (本小題滿分13分)

          如圖,在以點(diǎn)O為圓心,|AB|=4為直徑的半圓ADB中,ODAB,P是半圓弧上一點(diǎn),

          POB=30°,曲線C是滿足||MA|-|MB||為定值的動(dòng)點(diǎn)M的軌跡,且曲線C過(guò)點(diǎn)P

          (Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;

          (Ⅱ)設(shè)過(guò)點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)E、F。若△OEF的面積不小于2,求直線l斜率的取值范圍。

           

          查看答案和解析>>

          (08年湖北卷理)(本小題滿分13分)

          如圖,在以點(diǎn)O為圓心,|AB|=4為直徑的半圓ADB中,OD⊥AB,P是半圓弧上一點(diǎn),

          ∠POB=30°,曲線C是滿足||MA|-|MB||為定值的動(dòng)點(diǎn)M的軌跡,且曲線C過(guò)點(diǎn)P.

          (Ⅰ)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求曲線C的方程;

          (Ⅱ)設(shè)過(guò)點(diǎn)D的直線l與曲線C相交于不同的兩點(diǎn)E、F.

          若△OEF的面積不小于2,求直線l斜率的取值范圍.

          查看答案和解析>>

          (本小題滿分13分)如圖,拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),且開(kāi)口向右,點(diǎn)A,B,C在拋物線上,△ABC的重心F為拋物線的焦點(diǎn),直線AB的方程為.(Ⅰ)求拋物線的方程;(Ⅱ)設(shè)點(diǎn)M為某定點(diǎn),過(guò)點(diǎn)M的動(dòng)直線l與拋物線相交于P,Q兩點(diǎn),試推斷是否存在定點(diǎn)M,使得以線段PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

          查看答案和解析>>


          (本小題共13分)
            如圖,在直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),直線AB⊥x軸于點(diǎn)C,,動(dòng)點(diǎn)M到直線AB的距離是它到點(diǎn)D的距離的2倍。
           。↖)求點(diǎn)M的軌跡方程;
            (II)設(shè)點(diǎn)K為點(diǎn)M的軌跡與x軸正半軸的交點(diǎn),直線l交點(diǎn)M的軌跡于E,F(xiàn)兩點(diǎn)(E,F(xiàn)與點(diǎn)K不重合),且滿足,動(dòng)點(diǎn)P滿足,求直線KP的斜率的取值范圍。
            

          查看答案和解析>>

           

          第Ⅰ卷(選擇題,共50分)

          1―3  AAD  4(文)D(理)B  5(文)B(理)C 

          1. <legend id="o5kww"></legend>
            <style id="o5kww"><abbr id="o5kww"></abbr></style>

            <strong id="o5kww"><u id="o5kww"></u></strong>
          2. 1.3.5

            第Ⅱ卷(非選擇題,共100分)

            二、填空題

            11.4   12.96  13.-3  14.(文)(理)

            15.(文)   (理)

            三、解答題

            16.解:(1)

               

               

               

               

                 …………(4分)

               (1)(文科)在時(shí),

               

               

                在時(shí),為減函數(shù)

                從而的單調(diào)遞減區(qū)間為;…………(文8分)

               (2)(理科)  

                當(dāng)時(shí),由得單調(diào)遞減區(qū)間為

                同理,當(dāng)時(shí),函數(shù)的單調(diào)遞減區(qū)間為…………(理8分)

               (3)當(dāng),變換過(guò)程如下:

                1°將的圖象向右平移個(gè)單位可得函數(shù)的圖象。

                2°將所得函數(shù)圖象上每個(gè)點(diǎn)的縱坐標(biāo)擴(kuò)大為原來(lái)的倍,而橫坐標(biāo)保持不變,可得函數(shù)的圖象。

                3°再將所得圖象向上平移一個(gè)單位,可得的圖象……(12分)

               (其它的變換方法正確相應(yīng)給分)

            17.解:(1)三棱柱ABC―A1B1C1為直三棱柱

                底面ABC

                又AC面ABC

                AC

                又

               

                又AC面B1AC

                …………(6分)

               (2)三棱柱ABC―A1B1C1為直三棱柱

                底面ABC

                為直線B1C與平面ABC所成的角,即

                過(guò)點(diǎn)A作AM⊥BC于M,過(guò)M作MN⊥B1C于N,加結(jié)AN。

                ∴平面BB1CC1⊥平面ABC

                ∴AM⊥平面BB1C1C

                由三垂線定理知AN⊥B1C從而∠ANM為二面角B―B1C―A的平面角。

                設(shè)AB=BB1=

                在Rt△B1BC中,BC=BB1

              

                即二面角B―B1C―A的正切值為 …………(文12分)

               (3)(理科)過(guò)點(diǎn)A1作A1H⊥平面B1AC于H,連結(jié)HC,則

                ∠A1CH為直線A1C與平面B1AC所成的角

                由

               

              在Rt………………(理12分)

            18.解:(文科)(1)從口袋A中摸出的3個(gè)球?yàn)樽罴衙蚪M合即為從口袋A中摸出2個(gè)紅球和1個(gè)黑球,其概率為

              ………………………………(6分)

               (2)由題意知:每個(gè)口袋中摸球?yàn)樽罴呀M合的概率相同,從5個(gè)口袋中摸球可以看成5次獨(dú)立重復(fù)試難,故所求概率為

              ……………………………………(12分)

               (理科)(1)設(shè)用隊(duì)獲第一且丙隊(duì)獲第二為事件A,則

              ………………………………………(6分)

               (2)可能的取值為0,3,6;則

              甲兩場(chǎng)皆輸:

              甲兩場(chǎng)只勝一場(chǎng):

            <sub id="o5kww"></sub>

              1. 0

                3

                6

                P

                 

                  的分布列為

                 

                 

                 

                  …………………………(12分)

                19.解:(文科)(1)由

                  函數(shù)的定義域?yàn)椋ǎ?,1)

                  又

                  

                  …………………………………(6分)

                   (2)任取

                  

                  

                  

                  又

                  ……(13分)

                   (理科)(1)由

                  

                又由函數(shù)

                  當(dāng)且僅當(dāng)

                  

                  綜上…………………………………………………(6分)

                   (2)

                  

                ②令

                綜上所述實(shí)數(shù)m的取值范圍為……………(13分)

                20.解:(1)的解集有且只有一個(gè)元素

                  

                  又由

                  

                  當(dāng)

                  當(dāng)

                     …………………………………(文6分,理5分)

                   (2)         ①

                    ②

                由①-②得

                …………………………………………(文13分,理10分)

                   (3)(理科)由題設(shè)

                       

                       綜上,得數(shù)列共有3個(gè)變號(hào)數(shù),即變號(hào)數(shù)為3.……………………(理13分)

                21.解(1)

                 ………………………………(文6分,理4分)(2)(2)當(dāng)AB的斜率為0時(shí),顯然滿足題意

                當(dāng)AB的斜率不為0時(shí),設(shè),AB方程為代入橢圓方程

                整理得

                 

                綜上可知:恒有.………………………………(文13分,理9分)