日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對(duì)定義域分別是的函數(shù),. 查看更多

           

          題目列表(包括答案和解析)

          對(duì)定義域分別是的函數(shù),規(guī)定:函數(shù)

          ,若,

          的值域是__________________。

          查看答案和解析>>

          對(duì)定義域分別是F、G的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=
          f(x)+g(x),當(dāng)x∈F且x∈G 
          f(x),當(dāng)x∈F且x∉G 
          g(x),當(dāng)x∉F且x∈G

          已知函數(shù)f(x)=x2,g(x)=alnx(a∈R).
          (1)求函數(shù)h(x)的解析式;
          (2)對(duì)于實(shí)數(shù)a,函數(shù)h(x)是否存在最小值,如果存在,求出其最小值;如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          對(duì)定義域分別是Df、Dg的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=
          f(x)•g(x)  當(dāng)x∈Df且x∈Dg
          f(x)          當(dāng)x∈Df且x∉Dg
          g(x)          當(dāng)x∉Df且x∈Dg

          (1)若函數(shù)f(x)=
          1
          x
          ,g(x)=x2+4,寫(xiě)出函數(shù)h(x)的解析式;
          (2)求問(wèn)題(1)中函數(shù)h(x)的值域.

          查看答案和解析>>

          對(duì)定義域分別是Df、Dg的函數(shù)y=f(x),y=g(x),規(guī)定:函數(shù)h(x)=
          f(x)•g(x)    當(dāng)x∈Df且x∈Dg
          1      當(dāng)x∈Df且x∉Dg
          -1   當(dāng)x∉Df且x∈Dg

          (1)若f(α)=sinα•cosα,g(α)=cscα,寫(xiě)出h(α)的解析式;
          (2)寫(xiě)出問(wèn)題(1)中h(α)的取值范圍;
          (3)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請(qǐng)?jiān)O(shè)計(jì)一個(gè)定義域?yàn)镽的函數(shù)y=f(x),及一個(gè)α的值,使得h(x)=cos4x,并予以證明.

          查看答案和解析>>

          對(duì)定義域分別是Df、Dg的函數(shù)y=f(x)、y=g(x),規(guī)定:函數(shù)h(x)=
          f(x)•g(x)  (當(dāng)x∈Df且x∈Dg)
          f(x)  (當(dāng)x∈Df且x∉Dg)
          g(x)  (當(dāng)x∉Df且x∈Dg)

          (Ⅰ)若函數(shù)f(x)=
          1
          x-1
          ,g(x)=x2,寫(xiě)出函數(shù)h(x)的解析式;
          (Ⅱ)求問(wèn)題(1)中函數(shù)h(x)的值域;
          (Ⅲ)若g(x)=f(x+α),其中α是常數(shù),且α∈[0,π],請(qǐng)?jiān)O(shè)計(jì)一個(gè)定義域?yàn)镽的函數(shù)y=f(x),及一個(gè)α的值,使得h(x)=cos4x,并予以證明.

          查看答案和解析>>

           

          一、選擇題:

          (1)D     (2)B     (3)C     (4)B     (5)B     (6)A   

          (7)C     (8)A     (9)D    (10)B     (11)C    (12)B

           

          二、填空題:

          (13)2               (14)  (15)200  (16)②③ 

           

          三、解答題

          17.   (1) 故函數(shù)的定義域是(-1,1). ………… 2分

          (2)由,得(R),所以,      ……………  5分

          所求反函數(shù)為( R).                …………………  7分

          (3) ==-,所以是奇函數(shù).………  12分

           

          18. (1)設(shè),則.        …………………  1分

          由題設(shè)可得解得      ………………… 5分

          所以.                                …………………  6分

          (2) ,. ……  8分

          列表:

           

           

           

                                                               …………………  11分

          由表可得:函數(shù)的單調(diào)遞增區(qū)間為,       ………………  12分

          19.(1)證明:設(shè),且,

          ,且.                    …………………  2分

          上是增函數(shù),∴.        …………………  4分

          為奇函數(shù),∴,                      

          , 即上也是增函數(shù).         ………………  6分

          (2)∵函數(shù)上是增函數(shù),且在R上是奇函數(shù),

          上是增函數(shù).                       ……………………  7分

          于是

           

          .        …………  10分

          ∵當(dāng)時(shí),的最大值為

          ∴當(dāng)時(shí),不等式恒成立.                         ………………  12分

           

          20. ∵AB=x, ∴AD=12-x.                                   ………………1分

          ,于是.         ………………3分

          由勾股定理得   整理得    …………5分

          因此的面積 .  ……7分

            得                                ………………8分

          .                         ………………10分

          當(dāng)且僅當(dāng)時(shí),即當(dāng)時(shí),S有最大值  ……11分

          答:當(dāng)時(shí),的面積有最大值             ………………12分

           

          21. (1) h (x)                            …………………5分

             (2) 當(dāng)x≠1時(shí), h(x)= =x-1++2,                       ………………6分

                若 x > 1時(shí), 則 h (x)≥4,其中等號(hào)當(dāng) x = 2時(shí)成立               ………………8分

          若x<1時(shí), 則h (x) ≤ 0,其中等號(hào)當(dāng) x = 0時(shí)成立               ………………10分

          ∴函數(shù) h (x)的值域是 (-∞,0 ] ∪ { 1 } ∪ [ 4 ,+∞)             ………………12分

           

          22. (1)

          切線PQ的方程             ………2分

             (2)令y=0得                           ………4分

           

          解得 .                         ………6分

          又0<t<6, ∴4<t<6,                                            ………7分

          g (t)在(m, n)上單調(diào)遞減,故(m, n)              ………8分

          (3)當(dāng)在(0,4)上單調(diào)遞增,

           

          ∴P的橫坐標(biāo)的取值范圍為.                               ………14分

           

           


          同步練習(xí)冊(cè)答案