題目列表(包括答案和解析)
(本小題滿分12分)袋子中有質(zhì)地、大小完全相同的4個(gè)球,編號分別為1,2,3,4.甲、乙兩人玩一種游戲:甲先摸出一個(gè)球,記下編號,放回后乙再摸一個(gè)球,記下編號,若兩個(gè)編號的和為奇數(shù)算甲贏,否則算乙贏.記基本事件為,其中
分別為甲、乙摸到的球的編號。
(1)列舉出所有的基本事件,并求甲贏且編號的和為5的事件發(fā)生的概率;
(2)比較甲勝的概率與乙勝的概率,并說明這種游戲規(guī)則是否公平。(無詳細(xì)解答過程,不給分)
(3) 如果請你猜這兩球的號碼之和,猜中有獎.猜什么數(shù)獲獎的可能性大?說明理由.
(本小題滿分12分)甲乙兩人各有個(gè)材質(zhì)、大小、形狀完全相同的小球,甲的
小球上面標(biāo)有五個(gè)數(shù)字,乙的小球上面標(biāo)有
五個(gè)數(shù)字.把各自的小球放
入兩個(gè)不透明的口袋中,兩人同時(shí)從各自的口袋中隨機(jī)摸出個(gè)小球.規(guī)定:若甲摸出的小
球上的數(shù)字是乙摸出的小球上的數(shù)字的整數(shù)倍,則甲獲勝,否則乙獲勝.
(1)寫出基本事件空間;
(2)你認(rèn)為“規(guī)定”對甲、乙二人公平嗎?說出你的理由.
(理)(本小題滿分12分)
口袋里裝有大小相同的4個(gè)紅球和8個(gè)白球,甲、乙兩人依規(guī)則從袋中有放回摸球,每次摸出一個(gè)球,規(guī)則如下:若一方摸出一個(gè)紅球,則此人繼續(xù)下一次摸球;若一方摸出一個(gè)白球,則由對方接替下一次摸球,且每次摸球彼此相互獨(dú)立,并由甲進(jìn)行第一次摸球;求在前三次摸球中,甲摸得紅球的次數(shù)ξ的分布列及數(shù)學(xué)期望.
一、選擇題
題號
1
2
3
4
5
6
7
8
9
10
11
12
答案
C
B
C
A
B
A
C
B
B
理D 文B
D
理D 文C
二.填空題
13.(理)-1;(文) (-1,1)∪(2,+∞). 14. 90.
15. ;
16. (理)x+2y-3=0; (文)
.
三.解答題
17. 解:(I)平移以后得
,又
關(guān)于
對稱
,
,
當(dāng)且僅當(dāng)時(shí)取最大值,
所以,取得最大值時(shí)的集合為.…………6分
(II)的最小正周期為
;
,
,
在[
上的值域?yàn)?sub>
.…………12分
18.解:(I)當(dāng)n∈N時(shí)有:
=2
-3n, ∴
=2
-3(n+1),
兩式相減得:=2
-2
-3 ∴
=2
+3。 ……3分
∴+3=2(
+3)。
又=
=2
-3, ∴
=3,
+3=6≠0 ……4分
∴數(shù)列{+3}是首項(xiàng)6,公比為2的等比數(shù)列.從而c=3. ……6分
(II)由(1)知:+3=
, ∴
=
-3. ………8分
(Ⅲ)假設(shè)數(shù)列{}中是否存在三項(xiàng)
,
,
,(r<s<t),它們可以構(gòu)成等差數(shù)列,
∵<
<
, ∴只能是
+
=2
,
∴(-3)+(
-3)=2(
-3)
即+
=
.∴1+
=
.
∵r<s<t,r、s、t均為正整數(shù),∴式左邊為奇數(shù)右邊為偶數(shù),不可能成立.
因此數(shù)列{}中不存在可以構(gòu)成等差數(shù)列的三項(xiàng). ………12分
19. (理)解:設(shè)從甲袋中取出個(gè)白球的事件為
,從乙袋中取出
個(gè)白球的事件為
其中
=0,1,2,則
,
.
(I),
,
所以………………………..6分
(II)分布列是
0
1
2
3
4
P
……………12分
(文) 19.(I)三人恰好買到同一只股票的概率。 ……4分
(II)解法一:三人中恰好有兩個(gè)買到同一只股票的概率.……9分
由(I)知,三人恰好買到同一只股票的概率為,所以三人中至少有兩人買到同一只股票的概率
。 ……12分
|