日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 整理的.解得 查看更多

           

          題目列表(包括答案和解析)

          當(dāng)今的時(shí)代是計(jì)算機(jī)時(shí)代,我們知道計(jì)算機(jī)裝置有一數(shù)據(jù)輸入口A和一個(gè)運(yùn)算結(jié)果的輸出口

          B.某同學(xué)編入下列運(yùn)算程序?qū)?shù)據(jù)輸入且滿足以下性質(zhì):(1)從A輸入1時(shí),從B得到;(2)從A輸入整數(shù)n(n≥2)時(shí),在B得到的結(jié)果f(n)是將前一結(jié)果f(n-1)先乘以奇數(shù)2n-3,再除以奇數(shù)2n+1.試問:

          (Ⅰ)從A輸入2,3,4時(shí),從B分別得到什么數(shù)?

          (Ⅱ)從A輸入1,2,3,……2002時(shí),從B得到的各數(shù)之和是多少?并說明理由.

          查看答案和解析>>

          (理)已知電流I與時(shí)間t的關(guān)系式為:I=Asin(ωt+φ)(ω>0,|φ|<π/2),如圖是其在一個(gè)周期內(nèi)的圖象

          (1)求I的解析式

          (2)若t在任意一段1/150秒的時(shí)間內(nèi),電流I都能取得最大、最小值,那么ω的最小正整數(shù)是多少?

          查看答案和解析>>

          解答題:

          已知數(shù)列是由正數(shù)組成的等差數(shù)列,是其前項(xiàng)的和,并且

          (1)

          求數(shù)列的通項(xiàng)公式;

          (2)

          求使不等式對一切均成立的最大實(shí)數(shù);

          (3)

          對每一個(gè),在之間插入個(gè),得到新數(shù)列,設(shè)是數(shù)列的前項(xiàng)和,試問是否存在正整數(shù),使?若存在求出的值;若不存在,請說明理由.

          查看答案和解析>>

          為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對此班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
          喜愛打籃球 不喜愛打籃球 合計(jì)
          男生 5
          女生 10
          合計(jì) 50
          已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為
          3
          5

          (1)請將上面的列聯(lián)表補(bǔ)充完整;
          (2)是否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
          (3)已知喜愛打籃球的10位女生中,A1,A2,A3,A4,A5還喜歡打羽毛球,B1,B2,B3還喜歡打乒乓球,C1,C2還喜歡踢足球,現(xiàn)再從喜歡打羽毛球、喜歡打乒乓球、喜歡踢足球的女生中各選出1名進(jìn)行其他方面的調(diào)查,求B1和C1不全被選中的概率.
          下面的臨界值表供參考:
          p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
          k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
          (參考公式:K2=
          n(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)
          ,其中n=a+b+c+d)

          查看答案和解析>>

          為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如下的列聯(lián)表:
          喜愛打籃球 不喜愛打籃球 合計(jì)
          男生
          20
          20
          5
          25
          25
          女生 10
          15
          15
          25
          25
          合計(jì)
          30
          30
          20
          20
          50
          已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為
          3
          5

          (1)請將上面的列聯(lián)表補(bǔ)充完整;
          (2)是否有99.5%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由;
          下面的臨界值表供參考:
          p(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
          k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
          (參考公式:K2=
          n(ad-bc)2
          (a+b)(c+d)(a+c)(b+d)
          ,其中n=a+b+c+d)

          查看答案和解析>>


          同步練習(xí)冊答案