日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ⑵設動直線l:y=k(x+)與曲線C交于S.T兩點. 查看更多

           

          題目列表(包括答案和解析)

          已知動圓C過點A(-2,0),且與圓M:(x-2)2+y2=64相內(nèi)切.

          (1)求動圓C的圓心的軌跡方程;

          (2)設直線l:y=kx+m(其中k,m∈Z)與(1)所求軌跡交于不同兩點B,D,與雙曲線交于不同兩點E,F(xiàn),問是否存在直線l,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

          查看答案和解析>>

          已知動圓C過點A(-2,0),且與圓M:(x-2)2+y2=64相內(nèi)切.

          (1)求動圓C的圓心的軌跡方程;

          (2)設直線l:y=kx+m(其中k,m∈Z)與(1)所求軌跡交于不同兩點B,D,與雙曲線交于不同兩點E,F(xiàn),問是否存在直線l,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

          查看答案和解析>>

          已知動圓C過點A(-2,0),且與圓M:(x-2)2+y2=64相內(nèi)切.

          (1)求動圓C的圓心的軌跡方程;

          (2)設直線l:y=kx+m(其中k,m∈Z與(1)中所求軌跡交于不同兩點B,D,與雙曲線交于不同兩點E,F(xiàn),問是否存在直線l,使得向量,若存在,指出這樣的直線有多少條?若不存在,請說明理由.

          查看答案和解析>>

          (本小題16分)已知點A(-1, 0)、B(1, 0),△ABC的周長為2+2.記動點C的軌跡

          為曲線W.

          (1)直接寫出W的方程(不寫過程);

          (2)經(jīng)過點(0, )且斜率為k的直線l與曲線W 有兩個不同的交點P和Q,是否存在常數(shù)k,使得向量與向量共線?如果存在,求出k的值;如果不存在,請說明理由.

          (3)設W的左右焦點分別為F1、 F2,點R在直線l:x-y+8=0上.當∠F1RF2取最大值時,求的值.

          查看答案和解析>>

          已知橢圓=1(a>b>0),點P為其上一點,F(xiàn)1,F(xiàn)2為橢圓的焦點,∠F1PF2的外角平分線為l,點F2關于l的對稱點為Q,F(xiàn)2Q交l于點R.

          (1)當P點在橢圓上運動時,求R形成的軌跡方程;

          (2)設點R形成的曲線為C,直線l:y=k(x+a)與曲線C相交于A,B兩點,當△AOB的面積取得最大值時,求k的值.

          查看答案和解析>>

          一、選擇題

          1.D  2.A  3.C  4.D  5.B  6.C  7.D  8.B  9.A  10.A

          二、填空題

          11.148  12.-4  13.  14.-6  15.①②③④

          三、解答題

          16.解:⑴

                                                                                                                           3分

          =1+1+2cos2x

          =2+2cos2x

          =4cos2x

          ∵x∈[0,]  ∴cosx≥0

          =2cosx                                                                                                    6分

          ⑵ f (x)=cos2x-?2cosx?sinx

                =cos2x-sin2x

                =2cos(2x+)                                                                                           8分

          ∵0≤x≤  ∴

            ∴

          ,當x=時取得該最小值

           ,當x=0時取得該最大值                                                                  12分

          17.由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為                    3分

          ①當n=3時,x=3,y=0的概率為                                              6分

          ②|x-y|=2時,有x=3,y=1或x=1,y=3

          它的概率為                                                                12分

          18.解:⑴證明:在正方形ABCD中,AB⊥BC

          又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

          同理CD⊥PA  ∴PA⊥面ABCD    4分

          ⑵在AD上取一點O使AO=AD,連接E,O,

          則EO∥PA,∴EO⊥面ABCD 過點O做

          OH⊥AC交AC于H點,連接EH,則EH⊥AC,

          從而∠EHO為二面角E-AC-D的平面角                                                             6分

          在△PAD中,EO=AP=在△AHO中∠HAO=45°,

          ∴HO=AOsin45°=,∴tan∠EHO=

          ∴二面角E-AC-D等于arctan                                                                   8分

          ⑶當F為BC中點時,PF∥面EAC,理由如下:

          ∵AD∥2FC,∴,又由已知有,∴PF∥ES

          ∵PF面EAC,EC面EAC  ∴PF∥面EAC,

          即當F為BC中點時,PF∥面EAC                                                                         12分

          19.⑴f '(x)=3x2+2bx+c,由題知f '(1)=03+2b+c=0,

          f (1)=-11+b+c+2=-1

          ∴b=1,c=-5                                                                                                    3分

          f (x)=x3+x2-5x+2,f '(x)=3x2+2x-5

          f (x)在[-,1]為減函數(shù),f (x)在(1,+∞)為增函數(shù)

          ∴b=1,c=-5符合題意                                                                                      5分

          ⑵即方程:恰有三個不同的實解:

          x3+x2-5x+2=k(x≠0)

          即當x≠0時,f (x)的圖象與直線y=k恰有三個不同的交點,

          由⑴知f (x)在為增函數(shù),

          f (x)在為減函數(shù),f (x)在(1,+∞)為增函數(shù),

          ,f (1)=-1,f (2)=2

          且k≠2                                                                                               12分

          20.⑴∵

                                                                                                   3分

          ∴{an-3n}是以首項為a1-3=2,公比為-2的等比數(shù)列

          ∴an-3n=2?(-2)n1

          ∴an=3n+2?(-2)n1=3n-(-2)n                                                                        6分

          ⑵由3nbn=n?(3n-an)=n?[3n-3n+(-2)n]=n?(-2)n

          ∴bn=n?(-)n                                                                                                    8分

          <6

          ∴m≥6                                                                                                                   13分

          21.⑴設M(x0,y0),則N(x0,-y0),P(x,y)

          AM:y=  、

          BN:y=   ②

          聯(lián)立①②  ∴                                                                                      4分

          ∵點M(xo,yo)在圓⊙O上,代入圓的方程:

          整理:y2=-2(x+1)  (x<-1)                                                                             6分

          ⑵由

          設S(x1、y1),T(x2、y2),ST的中點坐標(x0、y0)

          則x1+x2=-(3+)

          x1x2                                                                                                          8分

          中點到直線的距離

          故圓與x=-總相切.                                                                                        14分

          ⑵另解:∵y2=-2(x+1)知焦點坐標為(-,0)                                                  2分

          頂點(-1,0),故準線x=-                                                                              4分

          設S、T到準線的距離為d1,d2,ST的中點O',O'到x=-的距離為

          又由拋物線定義:d1+d2=|ST|,∴

          故以ST為直徑的圓與x=-總相切                                                                      8分

           


          同步練習冊答案