日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ⑵若函數(shù)y=x2+x-5的圖象與函數(shù)y=的圖象恰有三個不同的交點.求實數(shù)k的取值范圍. 查看更多

           

          題目列表(包括答案和解析)

          命題

          ①函數(shù)y=f(x)的圖象與直線x=a最多有一個交點;

          ②函數(shù)y=-x2+2ax+1在區(qū)間(-∞,2]上單調(diào)遞增,則a∈(-∞,2];

          ③若

          [  ]
          A.

          2

          B.

          3

          C.

          4

          D.

          5

          查看答案和解析>>

          已知命題p:函數(shù)y=x2+ax+4的圖象與x軸沒有公共點,命題q:a2-4a-5≤0,若命題p∧q為真命題,求實數(shù)a的取值范圍.

          查看答案和解析>>

          已知:三次函數(shù)f(x)=x3ax2+bxc,在(-∞,-1),(2,+∞)上單調(diào)增,在(-1,2)上單調(diào)減,當且僅當x>4時,f(x)>x2-4x+5=g(x).

          (1)求函數(shù)f(x)的解析式;

          (2)若函數(shù)ym與函數(shù)f(x)、g(x)的圖象共有3個交點,求m的取值范圍.

          查看答案和解析>>

          下列四個命題中,真命題的序號有________(寫出所有真命題的序號).

          ①將函數(shù)y=|x+1|的圖象按向量v=(-1,0)平移,得到的圖象對應的函數(shù)表達式為y=|x|;

          ②圓x2+y2+4x+2y+1=0與直線y=相交,所得弦長為2;

          ③若sin(αβ),sin(αβ),則tanαcotβ=5;

          ④如圖,已知正方體ABCD-A1B1C1D1,P為底面ABCD內(nèi)一動點,P到平面AA1D1D的距離與到直線CC1的距離相等,則P點的軌跡是拋物線的一部分.

          查看答案和解析>>

          下列四個命題中,真命題的序號有________(寫出所有真命題的序號).

          ①將函數(shù)y=|x+1|的圖象按向量y=(-1,0)平移,得到的圖象對應的函數(shù)表達式為y=|x|

          ②圓x2y2+4x-2y+1=0與直線yx相交,所得弦長為2

          ③若sin(α+β)=,則sin(α+β)=,則tanαcotβ=5

          ④如圖,已知正方體ABCDA1B1C1D1P為底面ABCD內(nèi)一動點,P到平面AA1D1D的距離與到直線CC1的距離相等,則P點的軌跡是拋物線的一部分.

          查看答案和解析>>

          一、選擇題

          1.D  2.A  3.C  4.D  5.B  6.C  7.D  8.B  9.A  10.A

          二、填空題

          11.148  12.-4  13.  14.-6  15.①②③④

          三、解答題

          16.解:⑴

                                                                                                                           3分

          =1+1+2cos2x

          =2+2cos2x

          =4cos2x

          ∵x∈[0,]  ∴cosx≥0

          =2cosx                                                                                                    6分

          ⑵ f (x)=cos2x-?2cosx?sinx

                =cos2x-sin2x

                =2cos(2x+)                                                                                           8分

          ∵0≤x≤  ∴

            ∴

          ,當x=時取得該最小值

           ,當x=0時取得該最大值                                                                  12分

          17.由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為                    3分

          ①當n=3時,x=3,y=0的概率為                                              6分

          ②|x-y|=2時,有x=3,y=1或x=1,y=3

          它的概率為                                                                12分

          18.解:⑴證明:在正方形ABCD中,AB⊥BC

          又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

          同理CD⊥PA  ∴PA⊥面ABCD    4分

          ⑵在AD上取一點O使AO=AD,連接E,O,

          則EO∥PA,∴EO⊥面ABCD 過點O做

          OH⊥AC交AC于H點,連接EH,則EH⊥AC,

          從而∠EHO為二面角E-AC-D的平面角                                                             6分

          在△PAD中,EO=AP=在△AHO中∠HAO=45°,

          ∴HO=AOsin45°=,∴tan∠EHO=,

          ∴二面角E-AC-D等于arctan                                                                   8分

          ⑶當F為BC中點時,PF∥面EAC,理由如下:

          ∵AD∥2FC,∴,又由已知有,∴PF∥ES

          ∵PF面EAC,EC面EAC  ∴PF∥面EAC,

          即當F為BC中點時,PF∥面EAC                                                                         12分

          19.⑴f '(x)=3x2+2bx+c,由題知f '(1)=03+2b+c=0,

          f (1)=-11+b+c+2=-1

          ∴b=1,c=-5                                                                                                    3分

          f (x)=x3+x2-5x+2,f '(x)=3x2+2x-5

          f (x)在[-,1]為減函數(shù),f (x)在(1,+∞)為增函數(shù)

          ∴b=1,c=-5符合題意                                                                                      5分

          ⑵即方程:恰有三個不同的實解:

          x3+x2-5x+2=k(x≠0)

          即當x≠0時,f (x)的圖象與直線y=k恰有三個不同的交點,

          由⑴知f (x)在為增函數(shù),

          f (x)在為減函數(shù),f (x)在(1,+∞)為增函數(shù),

          ,f (1)=-1,f (2)=2

          且k≠2                                                                                               12分

          20.⑴∵

                                                                                                   3分

          ∴{an-3n}是以首項為a1-3=2,公比為-2的等比數(shù)列

          ∴an-3n=2?(-2)n1

          ∴an=3n+2?(-2)n1=3n-(-2)n                                                                        6分

          ⑵由3nbn=n?(3n-an)=n?[3n-3n+(-2)n]=n?(-2)n

          ∴bn=n?(-)n                                                                                                    8分

          <6

          ∴m≥6                                                                                                                   13分

          21.⑴設M(x0,y0),則N(x0,-y0),P(x,y)

          AM:y=   ①

          BN:y=  、

          聯(lián)立①②  ∴                                                                                      4分

          ∵點M(xo,yo)在圓⊙O上,代入圓的方程:

          整理:y2=-2(x+1)  (x<-1)                                                                             6分

          ⑵由

          設S(x1、y1),T(x2、y2),ST的中點坐標(x0、y0)

          則x1+x2=-(3+)

          x1x2                                                                                                          8分

          中點到直線的距離

          故圓與x=-總相切.                                                                                        14分

          ⑵另解:∵y2=-2(x+1)知焦點坐標為(-,0)                                                  2分

          頂點(-1,0),故準線x=-                                                                              4分

          設S、T到準線的距離為d1,d2,ST的中點O',O'到x=-的距離為

          又由拋物線定義:d1+d2=|ST|,∴

          故以ST為直徑的圓與x=-總相切                                                                      8分

           


          同步練習冊答案