日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 15.給出定義:在數(shù)列{an}中.都有.則稱{an}為“等方差數(shù)列 .下列是對“等方差數(shù)列 的判斷: 查看更多

           

          題目列表(包括答案和解析)

          給出定義:在數(shù)列{an}中,都有( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
          (1)數(shù)列{an}是等方差數(shù)列,則數(shù)列是等差數(shù)列;
          (2)數(shù)列{(-1)n}是等方差數(shù)列;
          (3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
          (4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}( k∈N*,k為常數(shù))也是等方差數(shù)列.
          其中正確命題序號為   

          查看答案和解析>>

          給出定義:在數(shù)列{an}中,都有( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
          (1)數(shù)列{an}是等方差數(shù)列,則數(shù)列是等差數(shù)列;
          (2)數(shù)列{(-1)n}是等方差數(shù)列;
          (3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
          (4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}( k∈N*,k為常數(shù))也是等方差數(shù)列.
          其中正確命題序號為   

          查看答案和解析>>

          閱讀下面給出的定義與定理:
          ①定義:對于給定數(shù)列{xn},如果存在實常數(shù)p、q,使得xn+1=pxn+q 對于任意n∈N+都成立,我們稱數(shù)列{xn}是“線性數(shù)列”.
          ②定理:“若線性數(shù)列{xn}滿足關(guān)系xn+1=pxn+q,其中p、q為常數(shù),且p≠1,p≠0,則數(shù)列{xn-
          q1-p
          }
          是以p為公比的等比數(shù)列.”
          (Ⅰ)如果an=2n,bn=3•2n,n∈N+,利用定義判斷數(shù)列{an}、{bn}是否為“線性數(shù)列”?若是,分別指出它們對應(yīng)的實常數(shù)p、q;若不是,請說明理由;
          (Ⅱ)如果數(shù)列{cn}的前n項和為Sn,且對于任意的n∈N*,都有Sn=2cn-3n,
          ①利用定義證明:數(shù)列{cn}為“線性數(shù)列”;
          ②應(yīng)用定理,求數(shù)列{cn}的通項公式;
          ③求數(shù)列{cn}的前n項和Sn

          查看答案和解析>>

          給出定義:在數(shù)列{an}中,都有
          a2n
          -
          a2n-1
          =p(n≥2,    n∈N*)
          ( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
          (1)數(shù)列{an}是等方差數(shù)列,則數(shù)列{
          a2n
          }
          是等差數(shù)列;
          (2)數(shù)列{(-1)n}是等方差數(shù)列;
          (3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
          (4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}( k∈N*,k為常數(shù))也是等方差數(shù)列.
          其中正確命題序號為______.

          查看答案和解析>>

          (2009•湖北模擬)給出定義:在數(shù)列{an}中,都有
          a
          2
          n
          -
          a
          2
          n-1
          =p(n≥2,n∈N*)
          ( p為常數(shù)),則稱{an}為“等方差數(shù)列”.下列是對“等方差數(shù)列”的判斷:
          (1)數(shù)列{an}是等方差數(shù)列,則數(shù)列{
          a
          2
          n
          }
          是等差數(shù)列;
          (2)數(shù)列{(-1)n}是等方差數(shù)列;
          (3)若數(shù)列{an}既是等方差數(shù)列,又是等差數(shù)列,則該數(shù)列必為常數(shù)數(shù)列;
          (4)若數(shù)列{an}是等方差數(shù)列,則數(shù)列{akn}(k∈N*,k為常數(shù))也是等方差數(shù)列.
          其中正確命題序號為
          (1)(2)(3)(4)
          (1)(2)(3)(4)

          查看答案和解析>>

          一、選擇題

          1.D  2.A  3.C  4.D  5.B  6.C  7.D  8.B  9.A  10.A

          二、填空題

          11.148  12.-4  13.  14.-6  15.①②③④

          三、解答題

          16.解:⑴

                                                                                                                           3分

          =1+1+2cos2x

          =2+2cos2x

          =4cos2x

          ∵x∈[0,]  ∴cosx≥0

          =2cosx                                                                                                    6分

          ⑵ f (x)=cos2x-?2cosx?sinx

                =cos2x-sin2x

                =2cos(2x+)                                                                                           8分

          ∵0≤x≤  ∴

            ∴

          ,當(dāng)x=時取得該最小值

           ,當(dāng)x=0時取得該最大值                                                                  12分

          17.由題意知,在甲盒中放一球概率為,在乙盒放一球的概率為                    3分

          ①當(dāng)n=3時,x=3,y=0的概率為                                              6分

          ②|x-y|=2時,有x=3,y=1或x=1,y=3

          它的概率為                                                                12分

          18.解:⑴證明:在正方形ABCD中,AB⊥BC

          又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

          同理CD⊥PA  ∴PA⊥面ABCD    4分

          ⑵在AD上取一點O使AO=AD,連接E,O,

          則EO∥PA,∴EO⊥面ABCD 過點O做

          OH⊥AC交AC于H點,連接EH,則EH⊥AC,

          從而∠EHO為二面角E-AC-D的平面角                                                             6分

          在△PAD中,EO=AP=在△AHO中∠HAO=45°,

          ∴HO=AOsin45°=,∴tan∠EHO=,

          ∴二面角E-AC-D等于arctan                                                                   8分

          ⑶當(dāng)F為BC中點時,PF∥面EAC,理由如下:

          ∵AD∥2FC,∴,又由已知有,∴PF∥ES

          ∵PF面EAC,EC面EAC  ∴PF∥面EAC,

          即當(dāng)F為BC中點時,PF∥面EAC                                                                         12分

          19.⑴f '(x)=3x2+2bx+c,由題知f '(1)=03+2b+c=0,

          f (1)=-11+b+c+2=-1

          ∴b=1,c=-5                                                                                                    3分

          f (x)=x3+x2-5x+2,f '(x)=3x2+2x-5

          f (x)在[-,1]為減函數(shù),f (x)在(1,+∞)為增函數(shù)

          ∴b=1,c=-5符合題意                                                                                      5分

          ⑵即方程:恰有三個不同的實解:

          x3+x2-5x+2=k(x≠0)

          即當(dāng)x≠0時,f (x)的圖象與直線y=k恰有三個不同的交點,

          由⑴知f (x)在為增函數(shù),

          f (x)在為減函數(shù),f (x)在(1,+∞)為增函數(shù),

          ,f (1)=-1,f (2)=2

          且k≠2                                                                                               12分

          20.⑴∵

                                                                                                   3分

          ∴{an-3n}是以首項為a1-3=2,公比為-2的等比數(shù)列

          ∴an-3n=2?(-2)n1

          ∴an=3n+2?(-2)n1=3n-(-2)n                                                                        6分

          ⑵由3nbn=n?(3n-an)=n?[3n-3n+(-2)n]=n?(-2)n

          ∴bn=n?(-)n                                                                                                    8分

          <6

          ∴m≥6                                                                                                                   13分

          21.⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

          AM:y=  、

          BN:y=  、

          聯(lián)立①②  ∴                                                                                      4分

          ∵點M(xo,yo)在圓⊙O上,代入圓的方程:

          整理:y2=-2(x+1)  (x<-1)                                                                             6分

          ⑵由

          設(shè)S(x1、y1),T(x2、y2),ST的中點坐標(biāo)(x0、y0)

          則x1+x2=-(3+)

          x1x2                                                                                                          8分

          中點到直線的距離

          故圓與x=-總相切.                                                                                        14分

          ⑵另解:∵y2=-2(x+1)知焦點坐標(biāo)為(-,0)                                                  2分

          頂點(-1,0),故準(zhǔn)線x=-                                                                              4分

          設(shè)S、T到準(zhǔn)線的距離為d1,d2,ST的中點O',O'到x=-的距離為

          又由拋物線定義:d1+d2=|ST|,∴

          故以ST為直徑的圓與x=-總相切                                                                      8分

           


          同步練習(xí)冊答案