日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. ⑵當(dāng)n=4時.設(shè).求ξ的分布列及數(shù)學(xué)期望Eξ. 查看更多

           

          題目列表(包括答案和解析)

          (08年安徽皖南八校聯(lián)考)(本小題滿分13分)

          袋中有紅球和黃球若干個,從中任摸一球,摸得紅球的概率為,摸得黃球的概率為.若從中任摸一球,放回再摸,第次摸得紅球,則記=1,摸得黃球,則記=一1.令

          (1)當(dāng)==時,記,求的分布列及數(shù)學(xué)期望;

          (2)當(dāng),時,求=1,2,3,4)的概率.

           

          查看答案和解析>>

          精英家教網(wǎng)如圖是在豎直平面內(nèi)的一個“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點(diǎn)處相遇,若豎直線段有第一條的為第一層,有二條的為第二層,…,依此類推.現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動.記小彈子落入第n層第m個豎直通道(從左至右)的概率為P(n,m).(已知在通道的分叉處,小彈子以相同的概率落入每個通道)
          (Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表達(dá)式.(不必證明)
          (Ⅱ)設(shè)小彈子落入第6層第m個豎直通道得到分?jǐn)?shù)為ξ,其中ξ=
          4-m,1≤m≤3
          m-3,4≤m≤6
          ,試求ξ的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          精英家教網(wǎng)如圖是在豎直平面內(nèi)的一個“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點(diǎn)處相遇,若豎直線段有第一條的為第一層,有二條的為第二層,…,依此類推.現(xiàn)有一顆小彈子從第一層的通道里向下運(yùn)動.記小彈子落入第n層第m個豎直通道(從左至右)的概率為P(n,m).(已知在通道的分叉處,小彈子以相同的概率落入每個通道)
          (Ⅰ)求P(2,1),P(3,2)的值,并猜想P(n,m)的表達(dá)式.(不必證明)
          (Ⅱ)設(shè)小彈子落入第6層第m個豎直通道得到分?jǐn)?shù)為ξ,其中ξ=
          4-m,1≤m≤3
          m-3,4≤m≤6
          ,試求ξ的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          一種電腦屏幕保護(hù)畫面,只有符號“○”和“×”隨機(jī)地反復(fù)出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為p,出現(xiàn)“×”的概率為q.若第k次出現(xiàn)“○”,則記ak=1;出現(xiàn)“×”,則記ak=-1.令Sn=a1+a2+…+an.

          (1)(理)當(dāng)p=q=時,記ξ=|S3|,求ξ的分布列及數(shù)學(xué)期望;

          (文)當(dāng)p=q=時,求S6≠2的概率;

          (2)當(dāng)p=,q=時,求S8=2且Si≥0(i=1,2,3,4)的概率.

          查看答案和解析>>

          一種電腦屏幕保護(hù)畫面,只有符號“○”和“×”隨機(jī)地反復(fù)出現(xiàn),每秒鐘變化一次,每次變化只出現(xiàn)“○”和“×”之一,其中出現(xiàn)“○”的概率為p,出現(xiàn)“×”的概率為q.若第k次出現(xiàn)“○”,則記ak=1;出現(xiàn)“×”,則記ak=-1.令Sn=a1+a2+…+an.

          (1)(理)當(dāng)p=q=時,記ξ=|S3|,求ξ的分布列及數(shù)學(xué)期望;

          (文)當(dāng)p=q=時,求S6≠2的概率;

          (2)當(dāng)p=,q=時,求S8=2且Si≥0(i=1,2,3,4)的概率.

          查看答案和解析>>

          一、選擇題

          1.B  2.A  3.C  4.B  5.B  6.D  7.C  8.C  9.D  10.A

          二、填空題

          11.  12.  13.-6  14.;  15.①②③④

          三、解答題

          16.解:⑴

                                                                                                                            3分

          =1+1+2cos2x=2+2cos2x=4cos2x

          ∵x∈[0,]  ∴cosx≥0

          =2cosx                                                                                                     6分

          ⑵ f (x)=cos2x-?2cosx?sinx=cos2x-sin2x

                =2cos(2x+)                                                                                            8分

          ∵0≤x≤  ∴  ∴  ∴

          ,當(dāng)x=時取得該最小值

           ,當(dāng)x=0時取得該最大值                                                                    12分

          17.由題意知,在甲盒中放一球概率為時,在乙盒放一球的概率為                  2分

          ①當(dāng)n=3時,x=3,y=0的概率為                                                 4分

          ②當(dāng)n=4時,x+y=4,又|x-y|=ξ,所以ξ的可能取值為0,2,4

          (i)當(dāng)ξ=0時,有x=2,y=2,它的概率為                                      4分

          (ii)當(dāng)ξ=2時,有x=3,y=1或x=1,y=3

             它的概率為

          (iii)當(dāng)ξ=4時,有x=4,y=0或x=0,y=4

             它的概率為

          故ξ的分布列為

          ξ

          0

          2

          4

          10分

          p

          ∴ξ的數(shù)學(xué)期望Eξ=                                                             12分

          18.解:⑴證明:在正方形ABCD中,AB⊥BC

          又∵PB⊥BC  ∴BC⊥面PAB  ∴BC⊥PA

          同理CD⊥PA  ∴PA⊥面ABCD    4分

          ⑵在AD上取一點(diǎn)O使AO=AD,連接E,O,

          則EO∥PA,∴EO⊥面ABCD 過點(diǎn)O做

          OH⊥AC交AC于H點(diǎn),連接EH,則EH⊥AC,

          從而∠EHO為二面角E-AC-D的平面角                                                             6分

          在△PAD中,EO=AP=在△AHO中∠HAO=45°,

          ∴HO=AOsin45°=,∴tan∠EHO=

          ∴二面角E-AC-D等于arctan                                                                    8分

          ⑶當(dāng)F為BC中點(diǎn)時,PF∥面EAC,理由如下:

          ∵AD∥2FC,∴,又由已知有,∴PF∥ES

          ∵PF面EAC,EC面EAC  ∴PF∥面EAC,

          即當(dāng)F為BC中點(diǎn)時,PF∥面EAC                                                                         12分

          19.⑴據(jù)題意,得                                                4分

                                                                                    5分

          ⑵由⑴得:當(dāng)5<x<7時,y=39(2x3-39x2+252x-535)

          當(dāng)5<x<6時,y'>0,y=f (x)為增函數(shù)

          當(dāng)6<x<7時,y'<0,y=f (x)為減函數(shù)

          ∴當(dāng)x=6時,f (x)極大值=f (16)=195                                                                      8分

          當(dāng)7≤x<8時,y=6(33-x)∈(150,156]

          當(dāng)x≥8時,y=-10(x-9)2+160

          當(dāng)x=9時,y極大=160                                                                                           10分

          綜上知:當(dāng)x=6時,總利潤最大,最大值為195                                                     12分

          20.⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

            1. (x0≠-1且x0≠3)

              BN:y=  、

              聯(lián)立①②  ∴                                                                                        4分

              ∵點(diǎn)M(xo,yo)在圓⊙O上,代入圓的方程:

              整理:y2=-2(x+1)  (x<-1)                                                                             6分

              ⑵由

              設(shè)S(x1、y1),T(x2、y2),ST的中點(diǎn)坐標(biāo)(x0、y0)

              則x1+x2=-(3+)

              x1x2                                                                                                           8分

              中點(diǎn)到直線的距離

              故圓與x=-總相切.                                                                                         13分

              ⑵另解:∵y2=-2(x+1)知焦點(diǎn)坐標(biāo)為(-,0)                                                   2分

              頂點(diǎn)(-1,0),故準(zhǔn)線x=-                                                                               4分

              設(shè)S、T到準(zhǔn)線的距離為d1,d2,ST的中點(diǎn)O',O'到x=-的距離為

              又由拋物線定義:d1+d2=|ST|,∴

              故以ST為直徑的圓與x=-總相切                                                                      8分

              21.解:⑴由,得

              ,有

                  =

                  =

              又b12a1=2,                                                                               3分

                                                                                                  4分

              ⑵證法1:(數(shù)學(xué)歸納法)

              1°,當(dāng)n=1時,a1=1,滿足不等式                                                    5分

              2°,假設(shè)n=k(k≥1,k∈N*)時結(jié)論成立

              ,那么

                                                                                                                     7分

              由1°,2°可知,n∈N*,都有成立                                                           9分

              ⑵證法2:由⑴知:                (可參照給分)

              ,,∴

                ∵

                ∴

              當(dāng)n=1時,,綜上

              ⑵證法3:

              ∴{an}為遞減數(shù)列

              當(dāng)n=1時,an取最大值  ∴an≤1

              由⑴中知  

              綜上可知

              欲證:即證                                                                             11分

              即ln(1+Tn)-Tn<0,構(gòu)造函數(shù)f (x)=ln(1+x)-x

              當(dāng)x>0時,f ' (x)<0

              ∴函數(shù)y=f (x)在(0,+∞)內(nèi)遞減

              ∴f (x)在[0,+∞)內(nèi)的最大值為f (0)=0

              ∴當(dāng)x≥0時,ln(1+x)-x≤0

              又∵Tn>0,∴l(xiāng)n(1+Tn)-Tn<0

              ∴不等式成立                                                                                           14分

               

              <sub id="o5kww"></sub>
              <legend id="o5kww"></legend>
              <style id="o5kww"><abbr id="o5kww"></abbr></style>

              <strong id="o5kww"><u id="o5kww"></u></strong>