題目列表(包括答案和解析)
C.選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系下,已知圓O:和直線
,
(1)求圓O和直線的直角坐標(biāo)方程;(2)當(dāng)
時,求直線
與圓O公共點的一個極坐標(biāo).
D.選修4-5:不等式證明選講
對于任意實數(shù)和
,不等式
恒成立,試求實數(shù)
的取值范圍.
C
[解析] 由基本不等式,得ab≤=
=
-ab,所以ab≤
,故B錯;
+
=
=
≥4,故A錯;由基本不等式得
≤
=
,即
+
≤
,故C正確;a2+b2=(a+b)2-2ab=1-2ab≥1-2×
=
,故D錯.故選C.
.定義域為R的函數(shù)滿足
,且當(dāng)
時,
,則當(dāng)
時,
的最小值為( )
(A) (B)
(C)
(D)
.過點作圓
的弦,其中弦長為整數(shù)的共有 ( 。
A.16條 B. 17條 C. 32條 D. 34條
一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有一項是符合題目要求的。
題號
1
2
3
4
5
6
7
8
9
10
答案
D
B
A
A
C
B
C
B
C
D
二、填空題:(每小題4分,共24分)
11.
12.800,20% 13.2 14.4 15.
16.1005
三、解答題:(17~20題,每小題12分,第21、22題14分,共計76分)
17.(本題滿分12分)
解:(1)在中,利用余弦定理,
,
代入得,
而是銳角三角形,所以角
??????????????????????? 5分
(2)
周期
因為
所以????????????????????????? 8分
當(dāng)時,
又
;
所以,在
上的單調(diào)減區(qū)間為
???????? 12分
18.(本題滿分12分)
解(I)設(shè)為
的中點,連結(jié)
,
為
的中點,
為
的中點,
==
==
==
????????????????????????????????????????????????? 4分
(Ⅱ)
(Ⅲ)由(Ⅱ)知,
19.(本題滿分12分)
解:(1)共有10個等可能性的基本事件,列舉如下:(1,2),(1,3),(1,4),(1,5),
(2,3),(2,4),(2,5)(3,4),(3,5),(4,5)。
(2)記事件“甲同學(xué)所抽取的兩題的編號之和小于8但不小于4”為事件A
由(1)可知事件共含有7個基本事件,列舉如下:(1,3),(1,4),(1,5),(2,3),
(2,4),(2,5),(3,4)
(3)記事件B“做對政治附加題同時還需做對兩道基本題”
記事件C“做對歷史附加題同時還需至少做對一道基本題”
記事件D“甲同學(xué)得分不低于20分”
20.(本題滿分12分)
(1)與由
切線的斜率切點坐標(biāo)
所求切線方程?????????????????????????????? 5分
(2)若函數(shù)為上單調(diào)增函數(shù),
則上恒成立,即不等式
在
上恒成立。
也即在
上恒成立
令,上述問題等價于
而為在
上的減函數(shù),
則,于是
為所求????????????????????????? 12分
21.(本題滿分14分)
解(1)由
(2)數(shù)列為等差數(shù)列,公差
從而
從而
22.(本題滿分14分)
解:(1)由題知:????? 4分
(2)因為:,從而
與
的平分線平行,
所以的平分線垂直于
軸;
由
不妨設(shè)的斜率為
,則
的斜率
;因此
和
的方程分別為:
、
;其中
;?????????? 8分
由得;
因為在橢圓上;所以
是方程
的一個根;
從而;????????????????????????????????????????? 10分
同理:;從而直線
的斜率
;
又、
;所以
;所以
所以向量
與
共線。 14分www.ks5u.com
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com