題目列表(包括答案和解析)
設(shè)函數(shù).
(I)求的單調(diào)區(qū)間;
(II)當(dāng)0<a<2時,求函數(shù)在區(qū)間
上的最小值.
【解析】第一問定義域為真數(shù)大于零,得到.
.
令,則
,所以
或
,得到結(jié)論。
第二問中, (
).
.
因為0<a<2,所以,
.令
可得
.
對參數(shù)討論的得到最值。
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
(I)定義域為. ………………………1分
.
令,則
,所以
或
. ……………………3分
因為定義域為,所以
.
令,則
,所以
.
因為定義域為,所以
. ………………………5分
所以函數(shù)的單調(diào)遞增區(qū)間為,
單調(diào)遞減區(qū)間為.
………………………7分
(II) (
).
.
因為0<a<2,所以,
.令
可得
.…………9分
所以函數(shù)在
上為減函數(shù),在
上為增函數(shù).
①當(dāng),即
時,
在區(qū)間上,
在
上為減函數(shù),在
上為增函數(shù).
所以. ………………………10分
②當(dāng),即
時,
在區(qū)間
上為減函數(shù).
所以.
綜上所述,當(dāng)時,
;
當(dāng)時,
1 |
3 |
1 |
2 |
已知
(1)求函數(shù)在
上的最小值
(2)對一切的恒成立,求實數(shù)a的取值范圍
(3)證明對一切,都有
成立
【解析】第一問中利用
當(dāng)
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時,
,
第二問中,,則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
第三問中問題等價于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時取得.從而對一切
,都有
成立
解:(1)當(dāng)
時,
在
單調(diào)遞減,在
單調(diào)遞增
,當(dāng)
,即
時,
,
…………4分
(2),則
設(shè)
,
則,
單調(diào)遞增,
,
,
單調(diào)遞減,
,因為對一切
,
恒成立,
…………9分
(3)問題等價于證明,
,
由(1)可知,
的最小值為
,當(dāng)且僅當(dāng)x=
時取得
設(shè),
,則
,易得
。當(dāng)且僅當(dāng)x=1時取得.從而對一切
,都有
成立
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com