日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (3)設(shè)函數(shù)若f(x0)>1.則x0的取值范圍是 查看更多

           

          題目列表(包括答案和解析)

          設(shè)函數(shù)y=f(x)=
          2x
          2x+
          2
          上兩點(diǎn)p1(x1,y1),p2(x2,y2),若
          op
          =
          1
          2
          (
          op1
          +
          op2
          )
          ,且P點(diǎn)的橫坐標(biāo)為
          1
          2

          (1)求P點(diǎn)的縱坐標(biāo);
          (2)若Sn=f(
          1
          n
          )+f(
          2
          n
          )+…+f(
          n-1
          n
          )+f(
          n
          n
          )
          ,求Sn;
          (3)記Tn為數(shù)列{
          1
          (Sn+
          2
          )(Sn+1+
          2
          )
          }
          的前n項(xiàng)和,若Tn<a(Sn+2+
          2
          )
          對(duì)一切n∈N*都成立,試求a的取值范圍.

          查看答案和解析>>

          已知函數(shù)f(x)=
          mxx2+n
          (m,n∈R)
          在x=1處取得極大值2.
          (1)求函數(shù)f(x)的解析式;      
          (2)求函數(shù)f(x)的極值;
          (3)設(shè)函數(shù)g(x)=x2-2ax+a,若對(duì)于任意x1∈R,總存在x2∈[-1,1],使得g(x2)≤f(x1),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          已知函數(shù)f(x)滿足f(x)=x3+f ′(
          2
          3
          )x2-x+C
          (其中f ′(
          2
          3
          )
          為f(x)在點(diǎn)x=
          2
          3
          處的導(dǎo)數(shù),C為常數(shù)).
          (1)求f ′(
          2
          3
          )
          的值;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)設(shè)函數(shù)g(x)=[f(x)-x3]•ex,若函數(shù)g(x)在x∈[-3,2]上單調(diào),求實(shí)數(shù)C的取值范圍.

          查看答案和解析>>

          設(shè)函數(shù)f(x)=x(x-1)2
          (1)求f(x)的極小值;
          (2)討論函數(shù)F(x)=f(x)+2x2-x-2axlnx零點(diǎn)的個(gè)數(shù),并說明理由?
          (3)設(shè)函數(shù)g(x)=ex-2x2+4x+t(t為常數(shù)),若使3-f(x)≤x+m≤g(x)在[0,+∞)上恒成立的實(shí)數(shù)m有且只有一個(gè),求實(shí)數(shù)t的值.(e7>103

          查看答案和解析>>

          在平行四邊形OABC中,已知過點(diǎn)C的直線與線段OA,OB分別相交于點(diǎn)M,N.若
          OM
          =x
          OA
          ON
          =y
          OB

          (1)求證:x與y的關(guān)系為y=
          x
          x+1
          ;
          (2)設(shè)f(x)=
          x
          x+1
          ,定義函數(shù)F(x)=
          1
          f(x)
          -1(0<x≤1)
          ,點(diǎn)列Pi(xi,F(xiàn)(xi))(i=1,2,…,n,n≥2)在函數(shù)F(x)的圖象上,且數(shù)列{xn}是以首項(xiàng)為1,公比為
          1
          2
          的等比數(shù)列,O為原點(diǎn),令
          OP
          =
          OP1
          +
          OP2
          +…+
          OPn
          ,是否存在點(diǎn)Q(1,m),使得
          OP
          OQ
          ?若存在,請(qǐng)求出Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
          (3)設(shè)函數(shù)G(x)為R上偶函數(shù),當(dāng)x∈[0,1]時(shí)G(x)=f(x),又函數(shù)G(x)圖象關(guān)于直線x=1對(duì)稱,當(dāng)方程G(x)=ax+
          1
          2
          在x∈[2k,2k+2](k∈N)上有兩個(gè)不同的實(shí)數(shù)解時(shí),求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

           

          一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,滿分60分.

          (1)B      (2)D     (3)D      (4)B      (5)B       (6)C

          (7)B      (8)C     (9)D      (10)C     (11)B      (12)A

          二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,滿分16分.

          (13)      (14)6,30,10    (15)120      (16)①④⑤

          三、解答題:

          (17)本小題主要考查三角函數(shù)的基本性質(zhì)和恒等變換的基本技能,考查畫圖的技能,滿分12分.

          解(I)

           

               

                   所以函數(shù)的最小正周期為π,最大值為.

          (Ⅱ)由(Ⅰ)知

          *

          1

          1

          1

          故函數(shù)在區(qū)間上的圖象是

           

           

           

           

           

           

           

          (18)本小題主要考查線面關(guān)系和直棱柱等基礎(chǔ)知識(shí),同時(shí)考查空間想像能力和推理運(yùn)算能力,滿分12分.

          解法一:(Ⅰ)連結(jié)BG,則BGBE在面ABD的射影,即∠EBGA1B與平面ABD所成的角.

          設(shè)FAB中點(diǎn),連結(jié)EFFC,

          D、E分別是CC1、A1B的中點(diǎn),又DC⊥平面ABC,

          CDEF為矩形.

          連結(jié)DF,G是△ADB的重心,

          GDF

          在直角三角形EFD中,

          ,

          EF=1,∴   ……4分

          于是

           ∴

          A1B與平面ABC所成的角是

          (Ⅱ)連結(jié)A1D,有

          EDAB,EDEF,又EFABF,

          ED⊥平面A1AB

          設(shè)A1到平面AED的距離為h

          則  

          又    

          ∴ 

          A1到平面AED的距離為

          解法二: (Ⅰ)連結(jié)BG,則BGBE在面ABD的射影,即∠A1BGA1B與平面ABD所成的角.

          如圖所示建立坐標(biāo)系,坐標(biāo)原點(diǎn)為O,設(shè)CA=2a,則 A(2a,0,0),B(0,2a,0),D(0,0,1),A1(2a,0,2),E(a,a,1),

          ,

          ,解得 a=1.

          A1B與平面ABD所成角是

          (Ⅱ)由(Ⅰ)有A(2,0,0),A1(2,0,2),E(1,1,1),D(0,0,1).

          ,

          ,

          ED⊥平面AA1E,又EDÌ平面AED,

          ∴ 平面AED⊥平面AA1E,又面AEDAA1EAE,

          ∴ 點(diǎn)A1在平面AED的射影KAE上.

          設(shè)

          ,即l+l+l-2=0,

          解得

          A1到平面AED的距離為

          (19)本小題主要考查導(dǎo)數(shù)的概念和計(jì)算,應(yīng)用導(dǎo)數(shù)研究函數(shù)性質(zhì)的方法及推理和運(yùn)算能力.滿分12分.

          解:

          當(dāng)a>0,x>0時(shí)

          f ¢(x)>0Ûx2+(2a-4)x+a2>0,

          f ¢(x)<0Ûx2+(2a-4)x+a2<0.

          (?)當(dāng)a > 1時(shí),對(duì)所有x > 0,有

          x2+(2a-4)x+a2>0,

          f ¢(x)>0,此時(shí)f(x)在(0,+∞)內(nèi)單調(diào)遞增.

          (?)當(dāng)a=1時(shí),對(duì)x≠1,有

          x2+(2a-4)x+a2>0,

          f ¢(x)>0,此時(shí)f(x)在(0,1)內(nèi)單調(diào)遞增,在(1,+∞)內(nèi)單調(diào)遞增.

          又知函數(shù)f(x)在x=1處連續(xù),因此,函數(shù)f(x)在(0,+∞)內(nèi)單調(diào)遞增.

          (?)當(dāng)0<a<1時(shí),令f ¢(x)>0,即

          x2+(2a-4)x+a2>0,

          解得,或

          因此,函數(shù)f(x)在區(qū)間內(nèi)單調(diào)遞增,在區(qū)間內(nèi)也單調(diào)遞增.

          f ¢(x)<0,即x2+(2a-4)x+a2 < 0,

          解得

          因此,函數(shù)f(x)在區(qū)間內(nèi)單調(diào)遞減.

           

          (20)本小題考查離散型隨機(jī)變量分布列和數(shù)學(xué)期望等概念,考查運(yùn)用概率知識(shí)解決實(shí)際問題的能力,滿分12分.

          解:(Ⅰ)x,h的可能取值分別為3,2,1,0.

          ,

          ;

          根據(jù)題意知x+h=3,所以

          ,

          ,

          (Ⅱ);

          因?yàn)?x +h=3,

          所以

           

          (21)本小題主要考查平面向量的概念和計(jì)算,求軌跡的方法,橢圓的方程和性質(zhì),利用方程判定曲線的性質(zhì),曲線與方程的關(guān)系等解析幾何的基本思想和綜合解題能力,滿分12分.

          解:根據(jù)題設(shè)條件,首先求出點(diǎn)P坐標(biāo)滿足的方程,據(jù)此再判斷是否存在兩定點(diǎn),使得點(diǎn)P到兩定點(diǎn)距離的和為定值.

          i=(1,0),c=(0,a),

          c+li=(l,a),i-2lc=(1,-2la).

          因此,直線OPAP的方程為

          ly=axya=-2lax

          消去參數(shù)l,得點(diǎn)P(x,y)的坐標(biāo)滿足方程y(ya)=­-2a2x2,

          整理得  .      ①

          因?yàn)?i>a>0,所以得:

          (?)當(dāng)時(shí),方程①是圓方程,故不存在合乎題意的定點(diǎn)EF;

          (?)當(dāng)時(shí),方程①表示橢圓,焦點(diǎn)為合乎題意的兩個(gè)定點(diǎn):

          (?)當(dāng)時(shí),方程①也表示橢圓,焦點(diǎn)為合乎題意的兩個(gè)定點(diǎn).

           

          (22)本小題主要考查數(shù)列、等比數(shù)列的概念,考查數(shù)學(xué)歸納法,考查靈活運(yùn)用數(shù)學(xué)知識(shí)分析問題和解決問題的能力,滿分14分.

          (Ⅰ)證法一:(?)當(dāng)n=1時(shí),由已知a1=1-2a0,等式成立;

          (?)假設(shè)當(dāng)nkk≥1)等式成立,即

          ,

          那么

          也就是說,當(dāng)nk+1時(shí),等式也成立.

          根據(jù)(?)和(?),可知等式對(duì)任何nN+成立.

          證法二:如果設(shè)ana3n=-2(an-1a3n-1),

          代入,可解出

          所以是公比為-2,首項(xiàng)為的等比數(shù)列.

          nN+),

          (Ⅱ)解法一:由an通項(xiàng)公式

          ,

          an>an-1nN+)等價(jià)于

          nN+).      ①

          (?)當(dāng)n=2k-1,k=1,2,…時(shí),①式即為

          ,

          即為 .               ②

          ②式對(duì)k=1,2,…都成立,有

          (?)當(dāng)n=2kk=1,2,…時(shí),①式即為

          即為

          ③式對(duì)k=1,2,…都成立,有

          .      ②

          綜上,①式對(duì)任意nN+成立,有

          a0的取值范圍為(0,).

          解法二:如果an>an-1nN+)成立,特別取n=1,2有

          a1a0=1-3a0>0,

          a2a1=6a0>0,

          因此 

          下面證明當(dāng)時(shí),對(duì)任意nN+,有anan-1>0.

          an通項(xiàng)公式

          (?)當(dāng)n=2k-1,k=1,2,…時(shí),

          =0.

          (?)當(dāng)n=2k,k=1,2,…時(shí),

          ≥0.

          a0的取值范圍為(0,).


          同步練習(xí)冊(cè)答案