日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)解:由于的最大值不大于所以 查看更多

           

          題目列表(包括答案和解析)

          已知函數(shù),其中.

            (1)若處取得極值,求曲線在點處的切線方程;

            (2)討論函數(shù)的單調(diào)性;

            (3)若函數(shù)上的最小值為2,求的取值范圍.

          【解析】第一問,處取得極值

          所以,,解得,此時,可得求曲線在點

          處的切線方程為:

          第二問中,易得的分母大于零,

          ①當(dāng)時, ,函數(shù)上單調(diào)遞增;

          ②當(dāng)時,由可得,由解得

          第三問,當(dāng)時由(2)可知,上處取得最小值,

          當(dāng)時由(2)可知處取得最小值,不符合題意.

          綜上,函數(shù)上的最小值為2時,求的取值范圍是

           

          查看答案和解析>>

          設(shè)A是由m×n個實數(shù)組成的m行n列的數(shù)表,滿足:每個數(shù)的絕對值不大于1,且所有數(shù)的和為零,記s(m,n)為所有這樣的數(shù)表構(gòu)成的集合。

          對于A∈S(m,n),記ri(A)為A的第ⅰ行各數(shù)之和(1≤ⅰ≤m),Cj(A)為A的第j列各數(shù)之和(1≤j≤n):

          記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

          (1)   對如下數(shù)表A,求K(A)的值;

          1

          1

          -0.8

          0.1

          -0.3

          -1

           

          (2)設(shè)數(shù)表A∈S(2,3)形如

          1

          1

          c

          a

          b

          -1

           

          求K(A)的最大值;

          (3)給定正整數(shù)t,對于所有的A∈S(2,2t+1),求K(A)的最大值。

          【解析】(1)因為,

          所以

          (2)  不妨設(shè).由題意得.又因為,所以,

          于是,,

              

          所以,當(dāng),且時,取得最大值1。

          (3)對于給定的正整數(shù)t,任給數(shù)表如下,

          任意改變A的行次序或列次序,或把A中的每一個數(shù)換成它的相反數(shù),所得數(shù)表

          ,并且,因此,不妨設(shè),

          得定義知,,

          又因為

          所以

               

               

          所以,

          對數(shù)表

          1

          1

          1

          -1

          -1

           

          ,

          綜上,對于所有的,的最大值為

           

          查看答案和解析>>

          已知冪函數(shù)滿足

          (1)求實數(shù)k的值,并寫出相應(yīng)的函數(shù)的解析式;

          (2)對于(1)中的函數(shù),試判斷是否存在正數(shù)m,使函數(shù),在區(qū)間上的最大值為5。若存在,求出m的值;若不存在,請說明理由。

          【解析】本試題主要考查了函數(shù)的解析式的求解和函數(shù)的最值的運(yùn)用。第一問中利用,冪函數(shù)滿足,得到

          因為,所以k=0,或k=1,故解析式為

          (2)由(1)知,,因此拋物線開口向下,對稱軸方程為:,結(jié)合二次函數(shù)的對稱軸,和開口求解最大值為5.,得到

          (1)對于冪函數(shù)滿足

          因此,解得,………………3分

          因為,所以k=0,或k=1,當(dāng)k=0時,,

          當(dāng)k=1時,,綜上所述,k的值為0或1,!6分

          (2)函數(shù),………………7分

          由此要求,因此拋物線開口向下,對稱軸方程為:,

          當(dāng)時,,因為在區(qū)間上的最大值為5,

          所以,或…………………………………………10分

          解得滿足題意

           

          查看答案和解析>>

          (本小題滿分12分)

          如圖,在邊長為4的菱形中,.點分別在邊上,點與點不重合,.沿翻折到的位置,使平面⊥平面

          (1)求證:⊥平面;

          (2)當(dāng)取得最小值時,請解答以下問題:

          (i)求四棱錐的體積;

          (ii)若點滿足= (),試探究:直線與平面所成角的大小是否一定大于?并說明理由.

           

          查看答案和解析>>

          仔細(xì)閱讀下面問題的解法:
          設(shè)A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          由已知可得  a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調(diào)遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學(xué)習(xí)以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設(shè)g(x)=
          10-x
          10+x
          x∈A,試判斷g(x)的單調(diào)性;(不證)
          (3)又若B={x|
          10-x
          10+x
          >2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>


          同步練習(xí)冊答案