日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 3.概率的性質(zhì):①隨機事件的概率為,②必然事件和不可能事件看作隨機事件的兩個特例.分別用和表示.必然事件的概率為.不可能事件的概率為.即.; 查看更多

           

          題目列表(包括答案和解析)

          (1)如果隨機試驗的結(jié)果可以用一個________來表示,那么這樣的________叫做隨機變量;按一定次序一一列出,這樣的隨機___________叫做離散型隨機_________;隨機變量可以取某一區(qū)間內(nèi)的__________,這樣的隨機變量叫做____________.?

          (2)設(shè)離散型隨機變量ξ可能取的值為x1,x2,…,xi,…,ξ取每一個值xi(i=1,2,…,n,…)的概率P(ξ=xi)=pi,則稱表

          ξ

          x1

          x2

          xi

          P

          p1

          ____

          ____

          ?  為隨機變量ξ的概率分布.具有性質(zhì):①pi______,i=1,2,…,n,…;②p1+p2+…+pn+…=_________.

          離散型隨機變量在某一范圍內(nèi)取值的概率等于它取這個范圍內(nèi)各個值的概率_______.?

          (3)二項分布:如果在一次試驗中某事件發(fā)生的概率是p,那么在n次獨立重復試驗中這個事件恰好發(fā)生k次的概率是P(ξ=k)=_______,其中k=0,1,2,3,…,n,q=1-p.于是得到隨機變量ξ的概率分布如下:

          ξ

          0

          1

          k

          n

          P

          p0qn

          C1np1qn-1

          ____

          pnq0

          由于pkqn-k恰好是二項展開式(q+p)n=p0qn+p1qn-1+…+________+…+pnq0中的第k+1項(k=0,1,2,…,n)中的各個值,故稱為隨機變量ξ的二項分布,記作ξ~B(n,p).

          查看答案和解析>>

          考察等式:
               (*)
          其中n,m,r∈N*,r≤m<n且r≤n-m,
          某同學用概率論方法證明等式(*)如下:設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品,現(xiàn)從中隨機取出r件產(chǎn)品,記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則,k=0,1,…,r。顯然A0,A1,…,Ar為互斥事件,且(必然事件),因此,
          所以,,即等式(*)成立。
          對此,有的同學認為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學對上述證明方法的科學性與嚴謹性提出質(zhì)疑.
          現(xiàn)有以下四個判斷:①等式(*)成立;②等式(*)不成立;③證明正確;④證明不正確,試寫出所有正確判斷的序號(    )。

          查看答案和解析>>

          考察等式:(*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學用概率論方法證明等式(*)如下:
          設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機取出r件產(chǎn)品,
          記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則,k=0,1,2,…,r.
          顯然A,A1,…,Ar為互斥事件,且A∪A1∪…∪Ar=Ω(必然事件),
          因此1=P(Ω)=P(A)+P(A1)+…P(Ar)=,
          所以,即等式(*)成立.
          對此,有的同學認為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學對上述證明方法的科學性與嚴謹性提出質(zhì)疑.現(xiàn)有以下四個判斷:
          ①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
          試寫出所有正確判斷的序號   

          查看答案和解析>>

          考察等式:Cm0Cn-mr+Cm1Cn-mr-1+…+CmrCn-m0=Cnr(*)其中n、m、r∈N*,r≤m<n且r≤n-m.某同學用概率論方法證明等式(*)如下:設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機取出r件產(chǎn)品,記事件Ak={取到的件產(chǎn)品中恰有件次品},則數(shù)學公式,k=0,1,…,r.顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=數(shù)學公式,所以Cm0Cn-mr+Cm1Cn-mr-1+…+CmrCn-m0=Cnr,即等式(*)成立.對此,有的同學認為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學對上述證明方法的科學性與嚴謹性提出質(zhì)疑.現(xiàn)有以下四個判斷:
          ①等式(*)成立;②等式(*)不成立③證明正確;④證明不正確
          試寫出所有正確判斷的序號________.

          查看答案和解析>>

          考察等式:
          C0m
          Crn-m
          +
          C1m
          Cr-1n-m
          +…+
          Crm
          C0n-m
          =
          Crn
          (*),其中n、m、r∈N*,r≤m<n且r≤n-m.某同學用概率論方法證明等式(*)如下:
          設(shè)一批產(chǎn)品共有n件,其中m件是次品,其余為正品.現(xiàn)從中隨機取出r件產(chǎn)品,
          記事件Ak={取到的r件產(chǎn)品中恰有k件次品},則P(Ak)=
          Ckm
          Cr-kn-m
          Crn
          ,k=0,1,2,…,r.
          顯然A0,A1,…,Ar為互斥事件,且A0∪A1∪…∪Ar=Ω(必然事件),
          因此1=P(Ω)=P(A0)+P(A1)+…P(Ar)=
          C0m
          Crn-m
          +
          C1m
          Cr-1n-m
          +…+
          Crm
          C0n-m
          Crn
          ,
          所以
          C0m
          Crn-m
          +
          C1m
          Cr-1n-m
          +…+
          Crm
          C0n-m
          =
          Crn
          ,即等式(*)成立.
          對此,有的同學認為上述證明是正確的,體現(xiàn)了偶然性與必然性的統(tǒng)一;但有的同學對上述證明方法的科學性與嚴謹性提出質(zhì)疑.現(xiàn)有以下四個判斷:
          ①等式(*)成立  ②等式(*)不成立  ③證明正確  ④證明不正確
          試寫出所有正確判斷的序號______.

          查看答案和解析>>


          同步練習冊答案