日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:⑴由已知=27.x==(33)=32=9,⑵由已知log3(log2x)=70=1,log2x=31=3;x=23=8 查看更多

           

          題目列表(包括答案和解析)

          仔細閱讀下面問題的解法:
          設A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          解:由已知可得  a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學習以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設g(x)=
          10-x
          10+x
          x∈A,試判斷g(x)的單調性;(不證)
          (3)又若B={x|
          10-x
          10+x
          >2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>

           [番茄花園1] (本題滿分)在△ABC中,角A,B,C所對的邊分別為a,b,c,設S為△ABC的面積,滿足。

          (Ⅰ)求角C的大小;

          (Ⅱ)求的最大值。

           (Ⅰ)解:由題意可知

          absinC=,2abcosC.

          所以tanC=.

          因為0<C<,

          所以C=.

          (Ⅱ)解:由已知sinA+sinB=sinA+sin(-C-A)=sinA+sin(-A)

                                  =sinA+cosA+sinA=sin(A+)≤.

          當△ABC為正三角形時取等號,

          所以sinA+sinB的最大值是.

           

           


           [番茄花園1]1.

          查看答案和解析>>

          仔細閱讀下面問題的解法:

              設A=[0, 1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍。

              解:由已知可得  a 21-x

                  令f(x)= 21-x ,∵不等式a <21-x在A上有解,

                  ∴a <f(x)在A上的最大值.

                  又f(x)在[0,1]上單調遞減,f(x)max =f(0)=2.  ∴實數(shù)a的取值范圍為a<2.

          研究學習以上問題的解法,請解決下面的問題:

          (1)已知函數(shù)f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數(shù)及反函數(shù)的定義域A;

          (2)對于(1)中的A,設g(x)=,x∈A,試判斷g(x)的單調性(寫明理由,不必證明);

          (3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數(shù)a的取值范圍。

          查看答案和解析>>

          仔細閱讀下面問題的解法:
          設A=[0,1],若不等式21-x-a>0在A上有解,求實數(shù)a的取值范圍.
          解:由已知可得 a<21-x
          令f(x)=21-x,不等式a<21-x在A上有解,
          ∴a<f(x)在A上的最大值
          又f(x)在[0,1]上單調遞減,f(x)max=f(0)=2
          ∴a<2即為所求.
          學習以上問題的解法,解決下面的問題:
          (1)已知函數(shù)f(x)=x2+2x+3 (-2≤x≤-1)求f(x)的反函數(shù)及反函數(shù)的定義域A;
          (2)對于(1)中的A,設g(x)=數(shù)學公式x∈A,試判斷g(x)的單調性;(不證)
          (3)又若B={x|數(shù)學公式>2x+a-5},若A∩B≠Φ,求實數(shù)a的取值范圍.

          查看答案和解析>>

          ,,為常數(shù),離心率為的雙曲線上的動點到兩焦點的距離之和的最小值為,拋物線的焦點與雙曲線的一頂點重合。(Ⅰ)求拋物線的方程;(Ⅱ)過直線為負常數(shù))上任意一點向拋物線引兩條切線,切點分別為、,坐標原點恒在以為直徑的圓內,求實數(shù)的取值范圍。

          【解析】第一問中利用由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

          第二問中,,,

          故直線的方程為,即,

          所以,同理可得:

          借助于根與系數(shù)的關系得到即是方程的兩個不同的根,所以

          由已知易得,即

          解:(Ⅰ)由已知易得雙曲線焦距為,離心率為,則長軸長為2,故雙曲線的上頂點為,所以拋物線的方程

          (Ⅱ)設,,

          故直線的方程為,即,

          所以,同理可得:,

          是方程的兩個不同的根,所以

          由已知易得,即

           

          查看答案和解析>>


          同步練習冊答案