日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 解:由及{an}是公比為正數(shù)得公比.所以 查看更多

           

          題目列表(包括答案和解析)

          在△ABC中,為三個內角為三條邊,

          (I)判斷△ABC的形狀;

          (II)若,求的取值范圍.

          【解析】本題主要考查正余弦定理及向量運算

          第一問利用正弦定理可知,邊化為角得到

          所以得到B=2C,然后利用內角和定理得到三角形的形狀。

          第二問中,

          得到。

          (1)解:由及正弦定理有:

          ∴B=2C,或B+2C,若B=2C,且,∴,;∴B+2C,則A=C,∴是等腰三角形。

          (2)

           

          查看答案和解析>>

          設點是拋物線的焦點,是拋物線上的個不同的點().

          (1) 當時,試寫出拋物線上的三個定點、的坐標,從而使得

          ;

          (2)當時,若,

          求證:;

          (3) 當時,某同學對(2)的逆命題,即:

          “若,則.”

          開展了研究并發(fā)現(xiàn)其為假命題.

          請你就此從以下三個研究方向中任選一個開展研究:

          ① 試構造一個說明該逆命題確實是假命題的反例(本研究方向最高得4分);

          ② 對任意給定的大于3的正整數(shù),試構造該假命題反例的一般形式,并說明你的理由(本研究方向最高得8分);

          ③ 如果補充一個條件后能使該逆命題為真,請寫出你認為需要補充的一個條件,并說明加上該條件后,能使該逆命題為真命題的理由(本研究方向最高得10分).

          【評分說明】本小題若填空不止一個研究方向,則以實得分最高的一個研究方向的得分作為本小題的最終得分.

          【解析】第一問利用拋物線的焦點為,設,

          分別過作拋物線的準線的垂線,垂足分別為.

          由拋物線定義得到

          第二問設,分別過作拋物線的準線垂線,垂足分別為.

          由拋物線定義得

          第三問中①取時,拋物線的焦點為,

          ,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

          ,

          ,不妨取;;

          解:(1)拋物線的焦點為,設,

          分別過作拋物線的準線的垂線,垂足分別為.由拋物線定義得

           

          因為,所以

          故可取滿足條件.

          (2)設,分別過作拋物線的準線垂線,垂足分別為.

          由拋物線定義得

             又因為

          所以.

          (3) ①取時,拋物線的焦點為

          ,分別過作拋物線的準線垂線,垂足分別為.由拋物線定義得

          ,不妨取;;;

          ,

          .

          ,,是一個當時,該逆命題的一個反例.(反例不唯一)

          ② 設,分別過

          拋物線的準線的垂線,垂足分別為,

          及拋物線的定義得

          ,即.

          因為上述表達式與點的縱坐標無關,所以只要將這點都取在軸的上方,則它們的縱坐標都大于零,則

          ,所以.

          (說明:本質上只需構造滿足條件且的一組個不同的點,均為反例.)

          ③ 補充條件1:“點的縱坐標)滿足 ”,即:

          “當時,若,且點的縱坐標)滿足,則”.此命題為真.事實上,設,

          分別過作拋物線準線的垂線,垂足分別為,由,

          及拋物線的定義得,即,則

          又由,所以,故命題為真.

          補充條件2:“點與點為偶數(shù),關于軸對稱”,即:

          “當時,若,且點與點為偶數(shù),關于軸對稱,則”.此命題為真.(證略)

           

          查看答案和解析>>

          (本小題滿分12分)

          有編號為,,…的10個零件,測量其直徑(單位:cm),得到下面數(shù)據(jù):


          其中直徑在區(qū)間[1.48,1.52]內的零件為一等品。

          (Ⅰ)從上述10個零件中,隨機抽取一個,求這個零件為一等品的概率;

          (Ⅱ)從一等品零件中,隨機抽取2個.

               (。┯昧慵木幪柫谐鏊锌赡艿某槿〗Y果;

               (ⅱ)求這2個零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分

          【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.

                (Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,

          ,,,共有15種.

                (ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,共有6種.

                所以P(B)=.

          (本小題滿分12分)

          如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

          (Ⅰ)求異面直線CE與AF所成角的余弦值;      

          (Ⅱ)證明CD⊥平面ABF;

          查看答案和解析>>

          零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分

          【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.

                (Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,

          ,,,共有15種.

                (ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,,共有6種.

                所以P(B)=.

          (本小題滿分12分)

          如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

          (Ⅰ)求異面直線CE與AF所成角的余弦值;      

          (Ⅱ)證明CD⊥平面ABF;

          (Ⅲ)求二面角B-EF-A的正切值。

          查看答案和解析>>

          零件直徑相等的概率。本小題主要考查用列舉法計算隨機事件所含的基本事件數(shù)及事件發(fā)生的概率等基礎知識,考查數(shù)據(jù)處理能力及運用概率知識解決簡單的實際問題的能力。滿分12分

          【解析】(Ⅰ)解:由所給數(shù)據(jù)可知,一等品零件共有6個.設“從10個零件中,隨機抽取一個為一等品”為事件A,則P(A)==.

                (Ⅱ)(i)解:一等品零件的編號為.從這6個一等品零件中隨機抽取2個,所有可能的結果有:,,,

          ,,,共有15種.

                (ii)解:“從一等品零件中,隨機抽取的2個零件直徑相等”(記為事件B)的所有可能結果有:,共有6種.

                所以P(B)=.

          (本小題滿分12分)

          如圖,在五面體ABCDEF中,四邊形ADEF是正方形,F(xiàn)A⊥平面ABCD,BC∥AD,CD=1,AD=,∠BAD=∠CDA=45°.

          (Ⅰ)求異面直線CE與AF所成角的余弦值;      

          (Ⅱ)證明CD⊥平面ABF;

          (Ⅲ)求二面角B-EF-A的正切值。

          查看答案和解析>>


          同步練習冊答案