題目列表(包括答案和解析)
已知曲線上動(dòng)點(diǎn)
到定點(diǎn)
與定直線
的距離之比為常數(shù)
.
(1)求曲線的軌跡方程;
(2)若過點(diǎn)引曲線C的弦AB恰好被點(diǎn)
平分,求弦AB所在的直線方程;
(3)以曲線的左頂點(diǎn)
為圓心作圓
:
,設(shè)圓
與曲線
交于點(diǎn)
與點(diǎn)
,求
的最小值,并求此時(shí)圓
的方程.
【解析】第一問利用(1)過點(diǎn)作直線
的垂線,垂足為D.
代入坐標(biāo)得到
第二問當(dāng)斜率k不存在時(shí),檢驗(yàn)得不符合要求;
當(dāng)直線l的斜率為k時(shí),;,化簡(jiǎn)得
第三問點(diǎn)N與點(diǎn)M關(guān)于X軸對(duì)稱,設(shè),, 不妨設(shè)
.
由于點(diǎn)M在橢圓C上,所以.
由已知,則
,
由于,故當(dāng)
時(shí),
取得最小值為
.
計(jì)算得,,故
,又點(diǎn)
在圓
上,代入圓的方程得到
.
故圓T的方程為:
已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓
的離心率為
,且經(jīng)過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(diǎn)(2,1)的直線
與橢圓
相交于不同的兩點(diǎn)
,滿足
?若存在,求出直線
的方程;若不存在,請(qǐng)說明理由.
【解析】第一問利用設(shè)橢圓的方程為
,由題意得
解得
第二問若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因?yàn)橹本與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以
所以.解得。
解:⑴設(shè)橢圓的方程為
,由題意得
解得,故橢圓
的方程為
.……………………4分
⑵若存在直線滿足條件的方程為
,代入橢圓
的方程得
.
因?yàn)橹本與橢圓
相交于不同的兩點(diǎn)
,設(shè)
兩點(diǎn)的坐標(biāo)分別為
,
所以
所以.
又,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912284792138316/SYS201207091229220620471975_ST.files/image009.png">,即,
所以.
即.
所以,解得
.
因?yàn)锳,B為不同的兩點(diǎn),所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
已知函數(shù),其中
.
(1)若在
處取得極值,求曲線
在點(diǎn)
處的切線方程;
(2)討論函數(shù)在
的單調(diào)性;
(3)若函數(shù)在
上的最小值為2,求
的取值范圍.
【解析】第一問,因
在
處取得極值
所以,,解得
,此時(shí)
,可得求曲線
在點(diǎn)
處的切線方程為:
第二問中,易得的分母大于零,
①當(dāng)時(shí),
,函數(shù)
在
上單調(diào)遞增;
②當(dāng)時(shí),由
可得
,由
解得
第三問,當(dāng)時(shí)由(2)可知,
在
上處取得最小值
,
當(dāng)時(shí)由(2)可知
在
處取得最小值
,不符合題意.
綜上,函數(shù)在
上的最小值為2時(shí),求
的取值范圍是
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com